File size: 9,686 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from dataclasses import dataclass, field
from typing import Any, Callable, Sequence

import torch
from torchvision.transforms import v2
from torchvision.transforms.v2 import Transform
from torchvision.transforms.v2 import functional as F  # noqa: N812


class RandomSubsetApply(Transform):
    """Apply a random subset of N transformations from a list of transformations.

    Args:
        transforms: list of transformations.
        p: represents the multinomial probabilities (with no replacement) used for sampling the transform.
            If the sum of the weights is not 1, they will be normalized. If ``None`` (default), all transforms
            have the same probability.
        n_subset: number of transformations to apply. If ``None``, all transforms are applied.
            Must be in [1, len(transforms)].
        random_order: apply transformations in a random order.
    """

    def __init__(
        self,
        transforms: Sequence[Callable],
        p: list[float] | None = None,
        n_subset: int | None = None,
        random_order: bool = False,
    ) -> None:
        super().__init__()
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence of callables")
        if p is None:
            p = [1] * len(transforms)
        elif len(p) != len(transforms):
            raise ValueError(
                f"Length of p doesn't match the number of transforms: {len(p)} != {len(transforms)}"
            )

        if n_subset is None:
            n_subset = len(transforms)
        elif not isinstance(n_subset, int):
            raise TypeError("n_subset should be an int or None")
        elif not (1 <= n_subset <= len(transforms)):
            raise ValueError(f"n_subset should be in the interval [1, {len(transforms)}]")

        self.transforms = transforms
        total = sum(p)
        self.p = [prob / total for prob in p]
        self.n_subset = n_subset
        self.random_order = random_order

        self.selected_transforms = None

    def forward(self, *inputs: Any) -> Any:
        needs_unpacking = len(inputs) > 1

        selected_indices = torch.multinomial(torch.tensor(self.p), self.n_subset)
        if not self.random_order:
            selected_indices = selected_indices.sort().values

        self.selected_transforms = [self.transforms[i] for i in selected_indices]

        for transform in self.selected_transforms:
            outputs = transform(*inputs)
            inputs = outputs if needs_unpacking else (outputs,)

        return outputs

    def extra_repr(self) -> str:
        return (
            f"transforms={self.transforms}, "
            f"p={self.p}, "
            f"n_subset={self.n_subset}, "
            f"random_order={self.random_order}"
        )


class SharpnessJitter(Transform):
    """Randomly change the sharpness of an image or video.

    Similar to a v2.RandomAdjustSharpness with p=1 and a sharpness_factor sampled randomly.
    While v2.RandomAdjustSharpness applies — with a given probability — a fixed sharpness_factor to an image,
    SharpnessJitter applies a random sharpness_factor each time. This is to have a more diverse set of
    augmentations as a result.

    A sharpness_factor of 0 gives a blurred image, 1 gives the original image while 2 increases the sharpness
    by a factor of 2.

    If the input is a :class:`torch.Tensor`,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        sharpness: How much to jitter sharpness. sharpness_factor is chosen uniformly from
            [max(0, 1 - sharpness), 1 + sharpness] or the given
            [min, max]. Should be non negative numbers.
    """

    def __init__(self, sharpness: float | Sequence[float]) -> None:
        super().__init__()
        self.sharpness = self._check_input(sharpness)

    def _check_input(self, sharpness):
        if isinstance(sharpness, (int, float)):
            if sharpness < 0:
                raise ValueError("If sharpness is a single number, it must be non negative.")
            sharpness = [1.0 - sharpness, 1.0 + sharpness]
            sharpness[0] = max(sharpness[0], 0.0)
        elif isinstance(sharpness, collections.abc.Sequence) and len(sharpness) == 2:
            sharpness = [float(v) for v in sharpness]
        else:
            raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")

        if not 0.0 <= sharpness[0] <= sharpness[1]:
            raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")

        return float(sharpness[0]), float(sharpness[1])

    def make_params(self, flat_inputs: list[Any]) -> dict[str, Any]:
        sharpness_factor = torch.empty(1).uniform_(self.sharpness[0], self.sharpness[1]).item()
        return {"sharpness_factor": sharpness_factor}

    def transform(self, inpt: Any, params: dict[str, Any]) -> Any:
        sharpness_factor = params["sharpness_factor"]
        return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)


@dataclass
class ImageTransformConfig:
    """
    For each transform, the following parameters are available:
      weight: This represents the multinomial probability (with no replacement)
            used for sampling the transform. If the sum of the weights is not 1,
            they will be normalized.
      type: The name of the class used. This is either a class available under torchvision.transforms.v2 or a
            custom transform defined here.
      kwargs: Lower & upper bound respectively used for sampling the transform's parameter
            (following uniform distribution) when it's applied.
    """

    weight: float = 1.0
    type: str = "Identity"
    kwargs: dict[str, Any] = field(default_factory=dict)


@dataclass
class ImageTransformsConfig:
    """
    These transforms are all using standard torchvision.transforms.v2
    You can find out how these transformations affect images here:
    https://pytorch.org/vision/0.18/auto_examples/transforms/plot_transforms_illustrations.html
    We use a custom RandomSubsetApply container to sample them.
    """

    # Set this flag to `true` to enable transforms during training
    enable: bool = False
    # This is the maximum number of transforms (sampled from these below) that will be applied to each frame.
    # It's an integer in the interval [1, number_of_available_transforms].
    max_num_transforms: int = 3
    # By default, transforms are applied in Torchvision's suggested order (shown below).
    # Set this to True to apply them in a random order.
    random_order: bool = False
    tfs: dict[str, ImageTransformConfig] = field(
        default_factory=lambda: {
            "brightness": ImageTransformConfig(
                weight=1.0,
                type="ColorJitter",
                kwargs={"brightness": (0.8, 1.2)},
            ),
            "contrast": ImageTransformConfig(
                weight=1.0,
                type="ColorJitter",
                kwargs={"contrast": (0.8, 1.2)},
            ),
            "saturation": ImageTransformConfig(
                weight=1.0,
                type="ColorJitter",
                kwargs={"saturation": (0.5, 1.5)},
            ),
            "hue": ImageTransformConfig(
                weight=1.0,
                type="ColorJitter",
                kwargs={"hue": (-0.05, 0.05)},
            ),
            "sharpness": ImageTransformConfig(
                weight=1.0,
                type="SharpnessJitter",
                kwargs={"sharpness": (0.5, 1.5)},
            ),
        }
    )


def make_transform_from_config(cfg: ImageTransformConfig):
    if cfg.type == "Identity":
        return v2.Identity(**cfg.kwargs)
    elif cfg.type == "ColorJitter":
        return v2.ColorJitter(**cfg.kwargs)
    elif cfg.type == "SharpnessJitter":
        return SharpnessJitter(**cfg.kwargs)
    else:
        raise ValueError(f"Transform '{cfg.type}' is not valid.")


class ImageTransforms(Transform):
    """A class to compose image transforms based on configuration."""

    def __init__(self, cfg: ImageTransformsConfig) -> None:
        super().__init__()
        self._cfg = cfg

        self.weights = []
        self.transforms = {}
        for tf_name, tf_cfg in cfg.tfs.items():
            if tf_cfg.weight <= 0.0:
                continue

            self.transforms[tf_name] = make_transform_from_config(tf_cfg)
            self.weights.append(tf_cfg.weight)

        n_subset = min(len(self.transforms), cfg.max_num_transforms)
        if n_subset == 0 or not cfg.enable:
            self.tf = v2.Identity()
        else:
            self.tf = RandomSubsetApply(
                transforms=list(self.transforms.values()),
                p=self.weights,
                n_subset=n_subset,
                random_order=cfg.random_order,
            )

    def forward(self, *inputs: Any) -> Any:
        return self.tf(*inputs)