File size: 51,002 Bytes
529ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
#!/usr/bin/env python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import logging
import shutil
from pathlib import Path
from typing import Callable

import datasets
import numpy as np
import packaging.version
import PIL.Image
import torch
import torch.utils
from datasets import concatenate_datasets, load_dataset
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.constants import REPOCARD_NAME
from huggingface_hub.errors import RevisionNotFoundError

from lerobot.common.constants import HF_LEROBOT_HOME
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_episode_stats
from lerobot.common.datasets.image_writer import AsyncImageWriter, write_image
from lerobot.common.datasets.utils import (
    DEFAULT_FEATURES,
    DEFAULT_IMAGE_PATH,
    INFO_PATH,
    TASKS_PATH,
    append_jsonlines,
    backward_compatible_episodes_stats,
    check_delta_timestamps,
    check_timestamps_sync,
    check_version_compatibility,
    create_empty_dataset_info,
    create_lerobot_dataset_card,
    embed_images,
    get_delta_indices,
    get_episode_data_index,
    get_features_from_robot,
    get_hf_features_from_features,
    get_safe_version,
    hf_transform_to_torch,
    is_valid_version,
    load_episodes,
    load_episodes_stats,
    load_info,
    load_stats,
    load_tasks,
    validate_episode_buffer,
    validate_frame,
    write_episode,
    write_episode_stats,
    write_info,
    write_json,
)
from lerobot.common.datasets.video_utils import (
    VideoFrame,
    decode_video_frames,
    encode_video_frames,
    get_safe_default_codec,
    get_video_info,
)
from lerobot.common.robot_devices.robots.utils import Robot

CODEBASE_VERSION = "v2.1"


class LeRobotDatasetMetadata:
    def __init__(
        self,
        repo_id: str,
        root: str | Path | None = None,
        revision: str | None = None,
        force_cache_sync: bool = False,
    ):
        self.repo_id = repo_id
        self.revision = revision if revision else CODEBASE_VERSION
        self.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id

        try:
            if force_cache_sync:
                raise FileNotFoundError
            self.load_metadata()
        except (FileNotFoundError, NotADirectoryError):
            if is_valid_version(self.revision):
                self.revision = get_safe_version(self.repo_id, self.revision)

            (self.root / "meta").mkdir(exist_ok=True, parents=True)
            self.pull_from_repo(allow_patterns="meta/")
            self.load_metadata()

    def load_metadata(self):
        self.info = load_info(self.root)
        check_version_compatibility(self.repo_id, self._version, CODEBASE_VERSION)
        self.tasks, self.task_to_task_index = load_tasks(self.root)
        self.episodes = load_episodes(self.root)
        if self._version < packaging.version.parse("v2.1"):
            self.stats = load_stats(self.root)
            self.episodes_stats = backward_compatible_episodes_stats(self.stats, self.episodes)
        else:
            self.episodes_stats = load_episodes_stats(self.root)
            self.stats = aggregate_stats(list(self.episodes_stats.values()))

    def pull_from_repo(
        self,
        allow_patterns: list[str] | str | None = None,
        ignore_patterns: list[str] | str | None = None,
    ) -> None:
        snapshot_download(
            self.repo_id,
            repo_type="dataset",
            revision=self.revision,
            local_dir=self.root,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
        )

    @property
    def _version(self) -> packaging.version.Version:
        """Codebase version used to create this dataset."""
        return packaging.version.parse(self.info["codebase_version"])

    def get_data_file_path(self, ep_index: int) -> Path:
        ep_chunk = self.get_episode_chunk(ep_index)
        fpath = self.data_path.format(episode_chunk=ep_chunk, episode_index=ep_index)
        return Path(fpath)

    def get_video_file_path(self, ep_index: int, vid_key: str) -> Path:
        ep_chunk = self.get_episode_chunk(ep_index)
        fpath = self.video_path.format(episode_chunk=ep_chunk, video_key=vid_key, episode_index=ep_index)
        return Path(fpath)

    def get_episode_chunk(self, ep_index: int) -> int:
        return ep_index // self.chunks_size

    @property
    def data_path(self) -> str:
        """Formattable string for the parquet files."""
        return self.info["data_path"]

    @property
    def video_path(self) -> str | None:
        """Formattable string for the video files."""
        return self.info["video_path"]

    @property
    def robot_type(self) -> str | None:
        """Robot type used in recording this dataset."""
        return self.info["robot_type"]

    @property
    def fps(self) -> int:
        """Frames per second used during data collection."""
        return self.info["fps"]

    @property
    def features(self) -> dict[str, dict]:
        """All features contained in the dataset."""
        return self.info["features"]

    @property
    def image_keys(self) -> list[str]:
        """Keys to access visual modalities stored as images."""
        return [key for key, ft in self.features.items() if ft["dtype"] == "image"]

    @property
    def video_keys(self) -> list[str]:
        """Keys to access visual modalities stored as videos."""
        return [key for key, ft in self.features.items() if ft["dtype"] == "video"]

    @property
    def camera_keys(self) -> list[str]:
        """Keys to access visual modalities (regardless of their storage method)."""
        return [key for key, ft in self.features.items() if ft["dtype"] in ["video", "image"]]

    @property
    def names(self) -> dict[str, list | dict]:
        """Names of the various dimensions of vector modalities."""
        return {key: ft["names"] for key, ft in self.features.items()}

    @property
    def shapes(self) -> dict:
        """Shapes for the different features."""
        return {key: tuple(ft["shape"]) for key, ft in self.features.items()}

    @property
    def total_episodes(self) -> int:
        """Total number of episodes available."""
        return self.info["total_episodes"]

    @property
    def total_frames(self) -> int:
        """Total number of frames saved in this dataset."""
        return self.info["total_frames"]

    @property
    def total_tasks(self) -> int:
        """Total number of different tasks performed in this dataset."""
        return self.info["total_tasks"]

    @property
    def total_chunks(self) -> int:
        """Total number of chunks (groups of episodes)."""
        return self.info["total_chunks"]

    @property
    def chunks_size(self) -> int:
        """Max number of episodes per chunk."""
        return self.info["chunks_size"]

    def get_task_index(self, task: str) -> int | None:
        """
        Given a task in natural language, returns its task_index if the task already exists in the dataset,
        otherwise return None.
        """
        return self.task_to_task_index.get(task, None)

    def add_task(self, task: str):
        """
        Given a task in natural language, add it to the dictionary of tasks.
        """
        if task in self.task_to_task_index:
            raise ValueError(f"The task '{task}' already exists and can't be added twice.")

        task_index = self.info["total_tasks"]
        self.task_to_task_index[task] = task_index
        self.tasks[task_index] = task
        self.info["total_tasks"] += 1

        task_dict = {
            "task_index": task_index,
            "task": task,
        }
        append_jsonlines(task_dict, self.root / TASKS_PATH)

    def save_episode(
        self,
        episode_index: int,
        episode_length: int,
        episode_tasks: list[str],
        episode_stats: dict[str, dict],
    ) -> None:
        self.info["total_episodes"] += 1
        self.info["total_frames"] += episode_length

        chunk = self.get_episode_chunk(episode_index)
        if chunk >= self.total_chunks:
            self.info["total_chunks"] += 1

        self.info["splits"] = {"train": f"0:{self.info['total_episodes']}"}
        self.info["total_videos"] += len(self.video_keys)
        if len(self.video_keys) > 0:
            self.update_video_info()

        write_info(self.info, self.root)

        episode_dict = {
            "episode_index": episode_index,
            "tasks": episode_tasks,
            "length": episode_length,
        }
        self.episodes[episode_index] = episode_dict
        write_episode(episode_dict, self.root)

        self.episodes_stats[episode_index] = episode_stats
        self.stats = aggregate_stats([self.stats, episode_stats]) if self.stats else episode_stats
        write_episode_stats(episode_index, episode_stats, self.root)

    def update_video_info(self) -> None:
        """
        Warning: this function writes info from first episode videos, implicitly assuming that all videos have
        been encoded the same way. Also, this means it assumes the first episode exists.
        """
        for key in self.video_keys:
            if not self.features[key].get("info", None):
                video_path = self.root / self.get_video_file_path(ep_index=0, vid_key=key)
                self.info["features"][key]["info"] = get_video_info(video_path)

    def __repr__(self):
        feature_keys = list(self.features)
        return (
            f"{self.__class__.__name__}({{\n"
            f"    Repository ID: '{self.repo_id}',\n"
            f"    Total episodes: '{self.total_episodes}',\n"
            f"    Total frames: '{self.total_frames}',\n"
            f"    Features: '{feature_keys}',\n"
            "})',\n"
        )

    @classmethod
    def create(
        cls,
        repo_id: str,
        fps: int,
        root: str | Path | None = None,
        robot: Robot | None = None,
        robot_type: str | None = None,
        features: dict | None = None,
        use_videos: bool = True,
    ) -> "LeRobotDatasetMetadata":
        """Creates metadata for a LeRobotDataset."""
        obj = cls.__new__(cls)
        obj.repo_id = repo_id
        obj.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id

        obj.root.mkdir(parents=True, exist_ok=False)

        if robot is not None:
            features = get_features_from_robot(robot, use_videos)
            robot_type = robot.robot_type
            if not all(cam.fps == fps for cam in robot.cameras.values()):
                logging.warning(
                    f"Some cameras in your {robot.robot_type} robot don't have an fps matching the fps of your dataset."
                    "In this case, frames from lower fps cameras will be repeated to fill in the blanks."
                )
        elif features is None:
            raise ValueError(
                "Dataset features must either come from a Robot or explicitly passed upon creation."
            )
        else:
            # TODO(aliberts, rcadene): implement sanity check for features
            features = {**features, **DEFAULT_FEATURES}

            # check if none of the features contains a "/" in their names,
            # as this would break the dict flattening in the stats computation, which uses '/' as separator
            for key in features:
                if "/" in key:
                    raise ValueError(f"Feature names should not contain '/'. Found '/' in feature '{key}'.")

            features = {**features, **DEFAULT_FEATURES}

        obj.tasks, obj.task_to_task_index = {}, {}
        obj.episodes_stats, obj.stats, obj.episodes = {}, {}, {}
        obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
        if len(obj.video_keys) > 0 and not use_videos:
            raise ValueError()
        write_json(obj.info, obj.root / INFO_PATH)
        obj.revision = None
        return obj


class LeRobotDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        repo_id: str,
        root: str | Path | None = None,
        episodes: list[int] | None = None,
        image_transforms: Callable | None = None,
        delta_timestamps: dict[list[float]] | None = None,
        tolerance_s: float = 1e-4,
        revision: str | None = None,
        force_cache_sync: bool = False,
        download_videos: bool = True,
        video_backend: str | None = None,
    ):
        """
        2 modes are available for instantiating this class, depending on 2 different use cases:

        1. Your dataset already exists:
            - On your local disk in the 'root' folder. This is typically the case when you recorded your
              dataset locally and you may or may not have pushed it to the hub yet. Instantiating this class
              with 'root' will load your dataset directly from disk. This can happen while you're offline (no
              internet connection).

            - On the Hugging Face Hub at the address https://huggingface.co/datasets/{repo_id} and not on
              your local disk in the 'root' folder. Instantiating this class with this 'repo_id' will download
              the dataset from that address and load it, pending your dataset is compliant with
              codebase_version v2.0. If your dataset has been created before this new format, you will be
              prompted to convert it using our conversion script from v1.6 to v2.0, which you can find at
              lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py.


        2. Your dataset doesn't already exists (either on local disk or on the Hub): you can create an empty
           LeRobotDataset with the 'create' classmethod. This can be used for recording a dataset or port an
           existing dataset to the LeRobotDataset format.


        In terms of files, LeRobotDataset encapsulates 3 main things:
            - metadata:
                - info contains various information about the dataset like shapes, keys, fps etc.
                - stats stores the dataset statistics of the different modalities for normalization
                - tasks contains the prompts for each task of the dataset, which can be used for
                  task-conditioned training.
            - hf_dataset (from datasets.Dataset), which will read any values from parquet files.
            - videos (optional) from which frames are loaded to be synchronous with data from parquet files.

        A typical LeRobotDataset looks like this from its root path:
        .
        ├── data
        │   ├── chunk-000
        │   │   ├── episode_000000.parquet
        │   │   ├── episode_000001.parquet
        │   │   ├── episode_000002.parquet
        │   │   └── ...
        │   ├── chunk-001
        │   │   ├── episode_001000.parquet
        │   │   ├── episode_001001.parquet
        │   │   ├── episode_001002.parquet
        │   │   └── ...
        │   └── ...
        ├── meta
        │   ├── episodes.jsonl
        │   ├── info.json
        │   ├── stats.json
        │   └── tasks.jsonl
        └── videos
            ├── chunk-000
            │   ├── observation.images.laptop
            │   │   ├── episode_000000.mp4
            │   │   ├── episode_000001.mp4
            │   │   ├── episode_000002.mp4
            │   │   └── ...
            │   ├── observation.images.phone
            │   │   ├── episode_000000.mp4
            │   │   ├── episode_000001.mp4
            │   │   ├── episode_000002.mp4
            │   │   └── ...
            ├── chunk-001
            └── ...

        Note that this file-based structure is designed to be as versatile as possible. The files are split by
        episodes which allows a more granular control over which episodes one wants to use and download. The
        structure of the dataset is entirely described in the info.json file, which can be easily downloaded
        or viewed directly on the hub before downloading any actual data. The type of files used are very
        simple and do not need complex tools to be read, it only uses .parquet, .json and .mp4 files (and .md
        for the README).

        Args:
            repo_id (str): This is the repo id that will be used to fetch the dataset. Locally, the dataset
                will be stored under root/repo_id.
            root (Path | None, optional): Local directory to use for downloading/writing files. You can also
                set the LEROBOT_HOME environment variable to point to a different location. Defaults to
                '~/.cache/huggingface/lerobot'.
            episodes (list[int] | None, optional): If specified, this will only load episodes specified by
                their episode_index in this list. Defaults to None.
            image_transforms (Callable | None, optional): You can pass standard v2 image transforms from
                torchvision.transforms.v2 here which will be applied to visual modalities (whether they come
                from videos or images). Defaults to None.
            delta_timestamps (dict[list[float]] | None, optional): _description_. Defaults to None.
            tolerance_s (float, optional): Tolerance in seconds used to ensure data timestamps are actually in
                sync with the fps value. It is used at the init of the dataset to make sure that each
                timestamps is separated to the next by 1/fps +/- tolerance_s. This also applies to frames
                decoded from video files. It is also used to check that `delta_timestamps` (when provided) are
                multiples of 1/fps. Defaults to 1e-4.
            revision (str, optional): An optional Git revision id which can be a branch name, a tag, or a
                commit hash. Defaults to current codebase version tag.
            sync_cache_first (bool, optional): Flag to sync and refresh local files first. If True and files
                are already present in the local cache, this will be faster. However, files loaded might not
                be in sync with the version on the hub, especially if you specified 'revision'. Defaults to
                False.
            download_videos (bool, optional): Flag to download the videos. Note that when set to True but the
                video files are already present on local disk, they won't be downloaded again. Defaults to
                True.
            video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec when available int the platform; otherwise, defaults to 'pyav'.
                You can also use the 'pyav' decoder used by Torchvision, which used to be the default option, or 'video_reader' which is another decoder of Torchvision.
        """
        super().__init__()
        self.repo_id = repo_id
        self.root = Path(root) if root else HF_LEROBOT_HOME / repo_id
        self.image_transforms = image_transforms
        self.delta_timestamps = delta_timestamps
        self.episodes = episodes
        self.tolerance_s = tolerance_s
        self.revision = revision if revision else CODEBASE_VERSION
        self.video_backend = video_backend if video_backend else get_safe_default_codec()
        self.delta_indices = None

        # Unused attributes
        self.image_writer = None
        self.episode_buffer = None

        self.root.mkdir(exist_ok=True, parents=True)

        # Load metadata
        self.meta = LeRobotDatasetMetadata(
            self.repo_id, self.root, self.revision, force_cache_sync=force_cache_sync
        )
        if self.episodes is not None and self.meta._version >= packaging.version.parse("v2.1"):
            episodes_stats = [self.meta.episodes_stats[ep_idx] for ep_idx in self.episodes]
            self.stats = aggregate_stats(episodes_stats)

        # Load actual data
        try:
            if force_cache_sync:
                raise FileNotFoundError
            assert all((self.root / fpath).is_file() for fpath in self.get_episodes_file_paths())
            self.hf_dataset = self.load_hf_dataset()
        except (AssertionError, FileNotFoundError, NotADirectoryError):
            self.revision = get_safe_version(self.repo_id, self.revision)
            self.download_episodes(download_videos)
            self.hf_dataset = self.load_hf_dataset()

        self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)

        # Check timestamps
        timestamps = torch.stack(self.hf_dataset["timestamp"]).numpy()
        episode_indices = torch.stack(self.hf_dataset["episode_index"]).numpy()
        ep_data_index_np = {k: t.numpy() for k, t in self.episode_data_index.items()}
        check_timestamps_sync(timestamps, episode_indices, ep_data_index_np, self.fps, self.tolerance_s)

        # Setup delta_indices
        if self.delta_timestamps is not None:
            check_delta_timestamps(self.delta_timestamps, self.fps, self.tolerance_s)
            self.delta_indices = get_delta_indices(self.delta_timestamps, self.fps)

    def push_to_hub(
        self,
        branch: str | None = None,
        tags: list | None = None,
        license: str | None = "apache-2.0",
        tag_version: bool = True,
        push_videos: bool = True,
        private: bool = False,
        allow_patterns: list[str] | str | None = None,
        upload_large_folder: bool = False,
        **card_kwargs,
    ) -> None:
        ignore_patterns = ["images/"]
        if not push_videos:
            ignore_patterns.append("videos/")

        hub_api = HfApi()
        hub_api.create_repo(
            repo_id=self.repo_id,
            private=private,
            repo_type="dataset",
            exist_ok=True,
        )
        if branch:
            hub_api.create_branch(
                repo_id=self.repo_id,
                branch=branch,
                revision=self.revision,
                repo_type="dataset",
                exist_ok=True,
            )

        upload_kwargs = {
            "repo_id": self.repo_id,
            "folder_path": self.root,
            "repo_type": "dataset",
            "revision": branch,
            "allow_patterns": allow_patterns,
            "ignore_patterns": ignore_patterns,
        }
        if upload_large_folder:
            hub_api.upload_large_folder(**upload_kwargs)
        else:
            hub_api.upload_folder(**upload_kwargs)

        if not hub_api.file_exists(self.repo_id, REPOCARD_NAME, repo_type="dataset", revision=branch):
            card = create_lerobot_dataset_card(
                tags=tags, dataset_info=self.meta.info, license=license, **card_kwargs
            )
            card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=branch)

        if tag_version:
            with contextlib.suppress(RevisionNotFoundError):
                hub_api.delete_tag(self.repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
            hub_api.create_tag(self.repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")

    def pull_from_repo(
        self,
        allow_patterns: list[str] | str | None = None,
        ignore_patterns: list[str] | str | None = None,
    ) -> None:
        snapshot_download(
            self.repo_id,
            repo_type="dataset",
            revision=self.revision,
            local_dir=self.root,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
        )

    def download_episodes(self, download_videos: bool = True) -> None:
        """Downloads the dataset from the given 'repo_id' at the provided version. If 'episodes' is given, this
        will only download those episodes (selected by their episode_index). If 'episodes' is None, the whole
        dataset will be downloaded. Thanks to the behavior of snapshot_download, if the files are already present
        in 'local_dir', they won't be downloaded again.
        """
        # TODO(rcadene, aliberts): implement faster transfer
        # https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads
        files = None
        ignore_patterns = None if download_videos else "videos/"
        if self.episodes is not None:
            files = self.get_episodes_file_paths()

        self.pull_from_repo(allow_patterns=files, ignore_patterns=ignore_patterns)

    def get_episodes_file_paths(self) -> list[Path]:
        episodes = self.episodes if self.episodes is not None else list(range(self.meta.total_episodes))
        fpaths = [str(self.meta.get_data_file_path(ep_idx)) for ep_idx in episodes]
        if len(self.meta.video_keys) > 0:
            video_files = [
                str(self.meta.get_video_file_path(ep_idx, vid_key))
                for vid_key in self.meta.video_keys
                for ep_idx in episodes
            ]
            fpaths += video_files

        return fpaths

    def load_hf_dataset(self) -> datasets.Dataset:
        """hf_dataset contains all the observations, states, actions, rewards, etc."""
        if self.episodes is None:
            path = str(self.root / "data")
            hf_dataset = load_dataset("parquet", data_dir=path, split="train")
        else:
            files = [str(self.root / self.meta.get_data_file_path(ep_idx)) for ep_idx in self.episodes]
            hf_dataset = load_dataset("parquet", data_files=files, split="train")

        # TODO(aliberts): hf_dataset.set_format("torch")
        hf_dataset.set_transform(hf_transform_to_torch)
        return hf_dataset

    def create_hf_dataset(self) -> datasets.Dataset:
        features = get_hf_features_from_features(self.features)
        ft_dict = {col: [] for col in features}
        hf_dataset = datasets.Dataset.from_dict(ft_dict, features=features, split="train")

        # TODO(aliberts): hf_dataset.set_format("torch")
        hf_dataset.set_transform(hf_transform_to_torch)
        return hf_dataset

    @property
    def fps(self) -> int:
        """Frames per second used during data collection."""
        return self.meta.fps

    @property
    def num_frames(self) -> int:
        """Number of frames in selected episodes."""
        return len(self.hf_dataset) if self.hf_dataset is not None else self.meta.total_frames

    @property
    def num_episodes(self) -> int:
        """Number of episodes selected."""
        return len(self.episodes) if self.episodes is not None else self.meta.total_episodes

    @property
    def features(self) -> dict[str, dict]:
        return self.meta.features

    @property
    def hf_features(self) -> datasets.Features:
        """Features of the hf_dataset."""
        if self.hf_dataset is not None:
            return self.hf_dataset.features
        else:
            return get_hf_features_from_features(self.features)

    def _get_query_indices(self, idx: int, ep_idx: int) -> tuple[dict[str, list[int | bool]]]:
        ep_start = self.episode_data_index["from"][ep_idx]
        ep_end = self.episode_data_index["to"][ep_idx]
        query_indices = {
            key: [max(ep_start.item(), min(ep_end.item() - 1, idx + delta)) for delta in delta_idx]
            for key, delta_idx in self.delta_indices.items()
        }
        padding = {  # Pad values outside of current episode range
            f"{key}_is_pad": torch.BoolTensor(
                [(idx + delta < ep_start.item()) | (idx + delta >= ep_end.item()) for delta in delta_idx]
            )
            for key, delta_idx in self.delta_indices.items()
        }
        return query_indices, padding

    def _get_query_timestamps(
        self,
        current_ts: float,
        query_indices: dict[str, list[int]] | None = None,
    ) -> dict[str, list[float]]:
        query_timestamps = {}
        for key in self.meta.video_keys:
            if query_indices is not None and key in query_indices:
                timestamps = self.hf_dataset.select(query_indices[key])["timestamp"]
                query_timestamps[key] = torch.stack(timestamps).tolist()
            else:
                query_timestamps[key] = [current_ts]

        return query_timestamps

    def _query_hf_dataset(self, query_indices: dict[str, list[int]]) -> dict:
        return {
            key: torch.stack(self.hf_dataset.select(q_idx)[key])
            for key, q_idx in query_indices.items()
            if key not in self.meta.video_keys
        }

    def _query_videos(self, query_timestamps: dict[str, list[float]], ep_idx: int) -> dict[str, torch.Tensor]:
        """Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
        in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a
        Segmentation Fault. This probably happens because a memory reference to the video loader is created in
        the main process and a subprocess fails to access it.
        """
        item = {}
        for vid_key, query_ts in query_timestamps.items():
            video_path = self.root / self.meta.get_video_file_path(ep_idx, vid_key)
            frames = decode_video_frames(video_path, query_ts, self.tolerance_s, self.video_backend)
            item[vid_key] = frames.squeeze(0)

        return item

    def _add_padding_keys(self, item: dict, padding: dict[str, list[bool]]) -> dict:
        for key, val in padding.items():
            item[key] = torch.BoolTensor(val)
        return item

    def __len__(self):
        return self.num_frames

    def __getitem__(self, idx) -> dict:
        item = self.hf_dataset[idx]
        ep_idx = item["episode_index"].item()

        query_indices = None
        if self.delta_indices is not None:
            query_indices, padding = self._get_query_indices(idx, ep_idx)
            query_result = self._query_hf_dataset(query_indices)
            item = {**item, **padding}
            for key, val in query_result.items():
                item[key] = val

        if len(self.meta.video_keys) > 0:
            current_ts = item["timestamp"].item()
            query_timestamps = self._get_query_timestamps(current_ts, query_indices)
            video_frames = self._query_videos(query_timestamps, ep_idx)
            item = {**video_frames, **item}

        if self.image_transforms is not None:
            image_keys = self.meta.camera_keys
            for cam in image_keys:
                item[cam] = self.image_transforms(item[cam])

        # Add task as a string
        task_idx = item["task_index"].item()
        item["task"] = self.meta.tasks[task_idx]

        return item

    def __repr__(self):
        feature_keys = list(self.features)
        return (
            f"{self.__class__.__name__}({{\n"
            f"    Repository ID: '{self.repo_id}',\n"
            f"    Number of selected episodes: '{self.num_episodes}',\n"
            f"    Number of selected samples: '{self.num_frames}',\n"
            f"    Features: '{feature_keys}',\n"
            "})',\n"
        )

    def create_episode_buffer(self, episode_index: int | None = None) -> dict:
        current_ep_idx = self.meta.total_episodes if episode_index is None else episode_index
        ep_buffer = {}
        # size and task are special cases that are not in self.features
        ep_buffer["size"] = 0
        ep_buffer["task"] = []
        for key in self.features:
            ep_buffer[key] = current_ep_idx if key == "episode_index" else []
        return ep_buffer

    def _get_image_file_path(self, episode_index: int, image_key: str, frame_index: int) -> Path:
        fpath = DEFAULT_IMAGE_PATH.format(
            image_key=image_key, episode_index=episode_index, frame_index=frame_index
        )
        return self.root / fpath

    def _save_image(self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path) -> None:
        if self.image_writer is None:
            if isinstance(image, torch.Tensor):
                image = image.cpu().numpy()
            write_image(image, fpath)
        else:
            self.image_writer.save_image(image=image, fpath=fpath)

    def add_frame(self, frame: dict) -> None:
        """
        This function only adds the frame to the episode_buffer. Apart from images — which are written in a
        temporary directory — nothing is written to disk. To save those frames, the 'save_episode()' method
        then needs to be called.
        """
        # Convert torch to numpy if needed
        for name in frame:
            if isinstance(frame[name], torch.Tensor):
                frame[name] = frame[name].numpy()

        validate_frame(frame, self.features)

        if self.episode_buffer is None:
            self.episode_buffer = self.create_episode_buffer()

        # Automatically add frame_index and timestamp to episode buffer
        frame_index = self.episode_buffer["size"]
        timestamp = frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
        self.episode_buffer["frame_index"].append(frame_index)
        self.episode_buffer["timestamp"].append(timestamp)

        # Add frame features to episode_buffer
        for key in frame:
            if key == "task":
                # Note: we associate the task in natural language to its task index during `save_episode`
                self.episode_buffer["task"].append(frame["task"])
                continue

            if key not in self.features:
                raise ValueError(
                    f"An element of the frame is not in the features. '{key}' not in '{self.features.keys()}'."
                )

            if self.features[key]["dtype"] in ["image", "video"]:
                img_path = self._get_image_file_path(
                    episode_index=self.episode_buffer["episode_index"], image_key=key, frame_index=frame_index
                )
                if frame_index == 0:
                    img_path.parent.mkdir(parents=True, exist_ok=True)
                self._save_image(frame[key], img_path)
                self.episode_buffer[key].append(str(img_path))
            else:
                self.episode_buffer[key].append(frame[key])

        self.episode_buffer["size"] += 1

    def save_episode(self, episode_data: dict | None = None) -> None:
        """
        This will save to disk the current episode in self.episode_buffer.

        Args:
            episode_data (dict | None, optional): Dict containing the episode data to save. If None, this will
                save the current episode in self.episode_buffer, which is filled with 'add_frame'. Defaults to
                None.
        """
        if not episode_data:
            episode_buffer = self.episode_buffer

        validate_episode_buffer(episode_buffer, self.meta.total_episodes, self.features)

        # size and task are special cases that won't be added to hf_dataset
        episode_length = episode_buffer.pop("size")
        tasks = episode_buffer.pop("task")
        episode_tasks = list(set(tasks))
        episode_index = episode_buffer["episode_index"]

        episode_buffer["index"] = np.arange(self.meta.total_frames, self.meta.total_frames + episode_length)
        episode_buffer["episode_index"] = np.full((episode_length,), episode_index)

        # Add new tasks to the tasks dictionary
        for task in episode_tasks:
            task_index = self.meta.get_task_index(task)
            if task_index is None:
                self.meta.add_task(task)

        # Given tasks in natural language, find their corresponding task indices
        episode_buffer["task_index"] = np.array([self.meta.get_task_index(task) for task in tasks])

        for key, ft in self.features.items():
            # index, episode_index, task_index are already processed above, and image and video
            # are processed separately by storing image path and frame info as meta data
            if key in ["index", "episode_index", "task_index"] or ft["dtype"] in ["image", "video"]:
                continue
            episode_buffer[key] = np.stack(episode_buffer[key])

        self._wait_image_writer()
        self._save_episode_table(episode_buffer, episode_index)
        ep_stats = compute_episode_stats(episode_buffer, self.features)

        if len(self.meta.video_keys) > 0:
            video_paths = self.encode_episode_videos(episode_index)
            for key in self.meta.video_keys:
                episode_buffer[key] = video_paths[key]

        # `meta.save_episode` be executed after encoding the videos
        self.meta.save_episode(episode_index, episode_length, episode_tasks, ep_stats)

        ep_data_index = get_episode_data_index(self.meta.episodes, [episode_index])
        ep_data_index_np = {k: t.numpy() for k, t in ep_data_index.items()}
        check_timestamps_sync(
            episode_buffer["timestamp"],
            episode_buffer["episode_index"],
            ep_data_index_np,
            self.fps,
            self.tolerance_s,
        )

        video_files = list(self.root.rglob("*.mp4"))
        assert len(video_files) == self.num_episodes * len(self.meta.video_keys)

        parquet_files = list(self.root.rglob("*.parquet"))
        assert len(parquet_files) == self.num_episodes

        # delete images
        img_dir = self.root / "images"
        if img_dir.is_dir():
            shutil.rmtree(self.root / "images")

        if not episode_data:  # Reset the buffer
            self.episode_buffer = self.create_episode_buffer()

    def _save_episode_table(self, episode_buffer: dict, episode_index: int) -> None:
        episode_dict = {key: episode_buffer[key] for key in self.hf_features}
        ep_dataset = datasets.Dataset.from_dict(episode_dict, features=self.hf_features, split="train")
        ep_dataset = embed_images(ep_dataset)
        self.hf_dataset = concatenate_datasets([self.hf_dataset, ep_dataset])
        self.hf_dataset.set_transform(hf_transform_to_torch)
        ep_data_path = self.root / self.meta.get_data_file_path(ep_index=episode_index)
        ep_data_path.parent.mkdir(parents=True, exist_ok=True)
        ep_dataset.to_parquet(ep_data_path)

    def clear_episode_buffer(self) -> None:
        episode_index = self.episode_buffer["episode_index"]
        if self.image_writer is not None:
            for cam_key in self.meta.camera_keys:
                img_dir = self._get_image_file_path(
                    episode_index=episode_index, image_key=cam_key, frame_index=0
                ).parent
                if img_dir.is_dir():
                    shutil.rmtree(img_dir)

        # Reset the buffer
        self.episode_buffer = self.create_episode_buffer()

    def start_image_writer(self, num_processes: int = 0, num_threads: int = 4) -> None:
        if isinstance(self.image_writer, AsyncImageWriter):
            logging.warning(
                "You are starting a new AsyncImageWriter that is replacing an already existing one in the dataset."
            )

        self.image_writer = AsyncImageWriter(
            num_processes=num_processes,
            num_threads=num_threads,
        )

    def stop_image_writer(self) -> None:
        """
        Whenever wrapping this dataset inside a parallelized DataLoader, this needs to be called first to
        remove the image_writer in order for the LeRobotDataset object to be pickleable and parallelized.
        """
        if self.image_writer is not None:
            self.image_writer.stop()
            self.image_writer = None

    def _wait_image_writer(self) -> None:
        """Wait for asynchronous image writer to finish."""
        if self.image_writer is not None:
            self.image_writer.wait_until_done()

    def encode_videos(self) -> None:
        """
        Use ffmpeg to convert frames stored as png into mp4 videos.
        Note: `encode_video_frames` is a blocking call. Making it asynchronous shouldn't speedup encoding,
        since video encoding with ffmpeg is already using multithreading.
        """
        for ep_idx in range(self.meta.total_episodes):
            self.encode_episode_videos(ep_idx)

    def encode_episode_videos(self, episode_index: int) -> dict:
        """
        Use ffmpeg to convert frames stored as png into mp4 videos.
        Note: `encode_video_frames` is a blocking call. Making it asynchronous shouldn't speedup encoding,
        since video encoding with ffmpeg is already using multithreading.
        """
        video_paths = {}
        for key in self.meta.video_keys:
            video_path = self.root / self.meta.get_video_file_path(episode_index, key)
            video_paths[key] = str(video_path)
            if video_path.is_file():
                # Skip if video is already encoded. Could be the case when resuming data recording.
                continue
            img_dir = self._get_image_file_path(
                episode_index=episode_index, image_key=key, frame_index=0
            ).parent
            encode_video_frames(img_dir, video_path, self.fps, overwrite=True)

        return video_paths

    @classmethod
    def create(
        cls,
        repo_id: str,
        fps: int,
        root: str | Path | None = None,
        robot: Robot | None = None,
        robot_type: str | None = None,
        features: dict | None = None,
        use_videos: bool = True,
        tolerance_s: float = 1e-4,
        image_writer_processes: int = 0,
        image_writer_threads: int = 0,
        video_backend: str | None = None,
    ) -> "LeRobotDataset":
        """Create a LeRobot Dataset from scratch in order to record data."""
        obj = cls.__new__(cls)
        obj.meta = LeRobotDatasetMetadata.create(
            repo_id=repo_id,
            fps=fps,
            root=root,
            robot=robot,
            robot_type=robot_type,
            features=features,
            use_videos=use_videos,
        )
        obj.repo_id = obj.meta.repo_id
        obj.root = obj.meta.root
        obj.revision = None
        obj.tolerance_s = tolerance_s
        obj.image_writer = None

        if image_writer_processes or image_writer_threads:
            obj.start_image_writer(image_writer_processes, image_writer_threads)

        # TODO(aliberts, rcadene, alexander-soare): Merge this with OnlineBuffer/DataBuffer
        obj.episode_buffer = obj.create_episode_buffer()

        obj.episodes = None
        obj.hf_dataset = obj.create_hf_dataset()
        obj.image_transforms = None
        obj.delta_timestamps = None
        obj.delta_indices = None
        obj.episode_data_index = None
        obj.video_backend = video_backend if video_backend is not None else get_safe_default_codec()
        return obj


class MultiLeRobotDataset(torch.utils.data.Dataset):
    """A dataset consisting of multiple underlying `LeRobotDataset`s.

    The underlying `LeRobotDataset`s are effectively concatenated, and this class adopts much of the API
    structure of `LeRobotDataset`.
    """

    def __init__(
        self,
        repo_ids: list[str],
        root: str | Path | None = None,
        episodes: dict | None = None,
        image_transforms: Callable | None = None,
        delta_timestamps: dict[list[float]] | None = None,
        tolerances_s: dict | None = None,
        download_videos: bool = True,
        video_backend: str | None = None,
    ):
        super().__init__()
        self.repo_ids = repo_ids
        self.root = Path(root) if root else HF_LEROBOT_HOME
        self.tolerances_s = tolerances_s if tolerances_s else dict.fromkeys(repo_ids, 0.0001)
        # Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
        # are handled by this class.
        self._datasets = [
            LeRobotDataset(
                repo_id,
                root=self.root / repo_id,
                episodes=episodes[repo_id] if episodes else None,
                image_transforms=image_transforms,
                delta_timestamps=delta_timestamps,
                tolerance_s=self.tolerances_s[repo_id],
                download_videos=download_videos,
                video_backend=video_backend,
            )
            for repo_id in repo_ids
        ]

        # Disable any data keys that are not common across all of the datasets. Note: we may relax this
        # restriction in future iterations of this class. For now, this is necessary at least for being able
        # to use PyTorch's default DataLoader collate function.
        self.disabled_features = set()
        intersection_features = set(self._datasets[0].features)
        for ds in self._datasets:
            intersection_features.intersection_update(ds.features)
        if len(intersection_features) == 0:
            raise RuntimeError(
                "Multiple datasets were provided but they had no keys common to all of them. "
                "The multi-dataset functionality currently only keeps common keys."
            )
        for repo_id, ds in zip(self.repo_ids, self._datasets, strict=True):
            extra_keys = set(ds.features).difference(intersection_features)
            logging.warning(
                f"keys {extra_keys} of {repo_id} were disabled as they are not contained in all the "
                "other datasets."
            )
            self.disabled_features.update(extra_keys)

        self.image_transforms = image_transforms
        self.delta_timestamps = delta_timestamps
        # TODO(rcadene, aliberts): We should not perform this aggregation for datasets
        # with multiple robots of different ranges. Instead we should have one normalization
        # per robot.
        self.stats = aggregate_stats([dataset.meta.stats for dataset in self._datasets])

    @property
    def repo_id_to_index(self):
        """Return a mapping from dataset repo_id to a dataset index automatically created by this class.

        This index is incorporated as a data key in the dictionary returned by `__getitem__`.
        """
        return {repo_id: i for i, repo_id in enumerate(self.repo_ids)}

    @property
    def repo_index_to_id(self):
        """Return the inverse mapping if repo_id_to_index."""
        return {v: k for k, v in self.repo_id_to_index}

    @property
    def fps(self) -> int:
        """Frames per second used during data collection.

        NOTE: Fow now, this relies on a check in __init__ to make sure all sub-datasets have the same info.
        """
        return self._datasets[0].meta.info["fps"]

    @property
    def video(self) -> bool:
        """Returns True if this dataset loads video frames from mp4 files.

        Returns False if it only loads images from png files.

        NOTE: Fow now, this relies on a check in __init__ to make sure all sub-datasets have the same info.
        """
        return self._datasets[0].meta.info.get("video", False)

    @property
    def features(self) -> datasets.Features:
        features = {}
        for dataset in self._datasets:
            features.update({k: v for k, v in dataset.hf_features.items() if k not in self.disabled_features})
        return features

    @property
    def camera_keys(self) -> list[str]:
        """Keys to access image and video stream from cameras."""
        keys = []
        for key, feats in self.features.items():
            if isinstance(feats, (datasets.Image, VideoFrame)):
                keys.append(key)
        return keys

    @property
    def video_frame_keys(self) -> list[str]:
        """Keys to access video frames that requires to be decoded into images.

        Note: It is empty if the dataset contains images only,
        or equal to `self.cameras` if the dataset contains videos only,
        or can even be a subset of `self.cameras` in a case of a mixed image/video dataset.
        """
        video_frame_keys = []
        for key, feats in self.features.items():
            if isinstance(feats, VideoFrame):
                video_frame_keys.append(key)
        return video_frame_keys

    @property
    def num_frames(self) -> int:
        """Number of samples/frames."""
        return sum(d.num_frames for d in self._datasets)

    @property
    def num_episodes(self) -> int:
        """Number of episodes."""
        return sum(d.num_episodes for d in self._datasets)

    @property
    def tolerance_s(self) -> float:
        """Tolerance in seconds used to discard loaded frames when their timestamps
        are not close enough from the requested frames. It is only used when `delta_timestamps`
        is provided or when loading video frames from mp4 files.
        """
        # 1e-4 to account for possible numerical error
        return 1 / self.fps - 1e-4

    def __len__(self):
        return self.num_frames

    def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
        if idx >= len(self):
            raise IndexError(f"Index {idx} out of bounds.")
        # Determine which dataset to get an item from based on the index.
        start_idx = 0
        dataset_idx = 0
        for dataset in self._datasets:
            if idx >= start_idx + dataset.num_frames:
                start_idx += dataset.num_frames
                dataset_idx += 1
                continue
            break
        else:
            raise AssertionError("We expect the loop to break out as long as the index is within bounds.")
        item = self._datasets[dataset_idx][idx - start_idx]
        item["dataset_index"] = torch.tensor(dataset_idx)
        for data_key in self.disabled_features:
            if data_key in item:
                del item[data_key]

        return item

    def __repr__(self):
        return (
            f"{self.__class__.__name__}(\n"
            f"  Repository IDs: '{self.repo_ids}',\n"
            f"  Number of Samples: {self.num_frames},\n"
            f"  Number of Episodes: {self.num_episodes},\n"
            f"  Type: {'video (.mp4)' if self.video else 'image (.png)'},\n"
            f"  Recorded Frames per Second: {self.fps},\n"
            f"  Camera Keys: {self.camera_keys},\n"
            f"  Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
            f"  Transformations: {self.image_transforms},\n"
            f")"
        )