Spaces:
Runtime error
Runtime error
Filip
commited on
Commit
·
56d8f41
1
Parent(s):
57a1258
update torch
Browse files
app.py
CHANGED
|
@@ -2,41 +2,56 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextStreamer
|
| 3 |
import torch
|
| 4 |
import gc
|
|
|
|
| 5 |
|
| 6 |
-
#
|
|
|
|
| 7 |
device = "cpu"
|
| 8 |
-
torch.set_default_device(device)
|
| 9 |
|
| 10 |
-
# Load model and tokenizer
|
| 11 |
def load_model():
|
| 12 |
model_name = "forestav/unsloth_vision_radiography_finetune"
|
| 13 |
|
| 14 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
model_name,
|
| 17 |
device_map="cpu",
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
| 21 |
)
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
return model, tokenizer, processor
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
# Initialize model and tokenizer globally
|
| 27 |
-
print("
|
| 28 |
try:
|
| 29 |
model, tokenizer, processor = load_model()
|
| 30 |
-
print("Model loaded successfully!")
|
| 31 |
except Exception as e:
|
| 32 |
print(f"Error loading model: {str(e)}")
|
| 33 |
raise
|
| 34 |
|
| 35 |
def analyze_image(image, instruction):
|
| 36 |
try:
|
| 37 |
-
# Clear
|
| 38 |
-
if torch.cuda.is_available():
|
| 39 |
-
torch.cuda.empty_cache()
|
| 40 |
gc.collect()
|
| 41 |
|
| 42 |
if instruction.strip() == "":
|
|
@@ -57,32 +72,28 @@ def analyze_image(image, instruction):
|
|
| 57 |
return_tensors="pt"
|
| 58 |
)
|
| 59 |
|
| 60 |
-
# Generate
|
| 61 |
-
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
| 62 |
-
|
| 63 |
-
# Generate with lower resource settings
|
| 64 |
with torch.no_grad():
|
| 65 |
outputs = model.generate(
|
| 66 |
**inputs,
|
| 67 |
max_new_tokens=128,
|
| 68 |
-
temperature=1.
|
| 69 |
min_p=0.1,
|
| 70 |
use_cache=True,
|
| 71 |
-
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
# Decode the response
|
| 75 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 76 |
|
| 77 |
-
#
|
| 78 |
del outputs
|
| 79 |
gc.collect()
|
| 80 |
-
if torch.cuda.is_available():
|
| 81 |
-
torch.cuda.empty_cache()
|
| 82 |
|
| 83 |
return response
|
| 84 |
except Exception as e:
|
| 85 |
-
return f"Error processing image: {str(e)}"
|
| 86 |
|
| 87 |
# Create the Gradio interface
|
| 88 |
with gr.Blocks() as demo:
|
|
@@ -93,7 +104,11 @@ with gr.Blocks() as demo:
|
|
| 93 |
|
| 94 |
with gr.Row():
|
| 95 |
with gr.Column():
|
| 96 |
-
image_input = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
instruction_input = gr.Textbox(
|
| 98 |
label="Custom Instruction (optional)",
|
| 99 |
placeholder="You are an expert radiographer. Describe accurately what you see in this image.",
|
|
@@ -113,9 +128,9 @@ with gr.Blocks() as demo:
|
|
| 113 |
|
| 114 |
gr.Markdown("""
|
| 115 |
### Notes:
|
| 116 |
-
- The model runs on CPU and may take
|
| 117 |
-
- For best results, upload
|
| 118 |
-
-
|
| 119 |
""")
|
| 120 |
|
| 121 |
# Launch the app
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextStreamer
|
| 3 |
import torch
|
| 4 |
import gc
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
+
# Enable better CPU performance
|
| 8 |
+
torch.set_num_threads(4) # Adjust based on available CPU cores
|
| 9 |
device = "cpu"
|
|
|
|
| 10 |
|
|
|
|
| 11 |
def load_model():
|
| 12 |
model_name = "forestav/unsloth_vision_radiography_finetune"
|
| 13 |
|
| 14 |
+
# Load tokenizer and processor first to free up memory
|
| 15 |
+
print("Loading tokenizer and processor...")
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 18 |
+
|
| 19 |
+
print("Loading model...")
|
| 20 |
+
# Load model with CPU optimizations
|
| 21 |
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
model_name,
|
| 23 |
device_map="cpu",
|
| 24 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
| 25 |
+
low_cpu_mem_usage=True,
|
| 26 |
+
offload_folder="offload", # Enable disk offloading
|
| 27 |
+
offload_state_dict=True # Offload state dict to disk
|
| 28 |
)
|
| 29 |
+
|
| 30 |
+
# Quantize the model for CPU
|
| 31 |
+
print("Quantizing model...")
|
| 32 |
+
model = torch.quantization.quantize_dynamic(
|
| 33 |
+
model,
|
| 34 |
+
{torch.nn.Linear}, # Quantize linear layers
|
| 35 |
+
dtype=torch.qint8
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
return model, tokenizer, processor
|
| 39 |
|
| 40 |
+
# Create offload directory if it doesn't exist
|
| 41 |
+
os.makedirs("offload", exist_ok=True)
|
| 42 |
+
|
| 43 |
# Initialize model and tokenizer globally
|
| 44 |
+
print("Starting model initialization...")
|
| 45 |
try:
|
| 46 |
model, tokenizer, processor = load_model()
|
| 47 |
+
print("Model loaded and quantized successfully!")
|
| 48 |
except Exception as e:
|
| 49 |
print(f"Error loading model: {str(e)}")
|
| 50 |
raise
|
| 51 |
|
| 52 |
def analyze_image(image, instruction):
|
| 53 |
try:
|
| 54 |
+
# Clear memory
|
|
|
|
|
|
|
| 55 |
gc.collect()
|
| 56 |
|
| 57 |
if instruction.strip() == "":
|
|
|
|
| 72 |
return_tensors="pt"
|
| 73 |
)
|
| 74 |
|
| 75 |
+
# Generate with conservative settings for CPU
|
|
|
|
|
|
|
|
|
|
| 76 |
with torch.no_grad():
|
| 77 |
outputs = model.generate(
|
| 78 |
**inputs,
|
| 79 |
max_new_tokens=128,
|
| 80 |
+
temperature=1.0,
|
| 81 |
min_p=0.1,
|
| 82 |
use_cache=True,
|
| 83 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 84 |
+
num_beams=1 # Reduce beam search to save memory
|
| 85 |
)
|
| 86 |
|
| 87 |
# Decode the response
|
| 88 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 89 |
|
| 90 |
+
# Clean up
|
| 91 |
del outputs
|
| 92 |
gc.collect()
|
|
|
|
|
|
|
| 93 |
|
| 94 |
return response
|
| 95 |
except Exception as e:
|
| 96 |
+
return f"Error processing image: {str(e)}\nPlease try again with a smaller image or different settings."
|
| 97 |
|
| 98 |
# Create the Gradio interface
|
| 99 |
with gr.Blocks() as demo:
|
|
|
|
| 104 |
|
| 105 |
with gr.Row():
|
| 106 |
with gr.Column():
|
| 107 |
+
image_input = gr.Image(
|
| 108 |
+
type="pil",
|
| 109 |
+
label="Upload Medical Image",
|
| 110 |
+
max_pixels=1500000 # Limit image size
|
| 111 |
+
)
|
| 112 |
instruction_input = gr.Textbox(
|
| 113 |
label="Custom Instruction (optional)",
|
| 114 |
placeholder="You are an expert radiographer. Describe accurately what you see in this image.",
|
|
|
|
| 128 |
|
| 129 |
gr.Markdown("""
|
| 130 |
### Notes:
|
| 131 |
+
- The model runs on CPU and may take several moments to process each image
|
| 132 |
+
- For best results, upload images smaller than 1.5MP
|
| 133 |
+
- Please be patient during processing
|
| 134 |
""")
|
| 135 |
|
| 136 |
# Launch the app
|