Spaces:
Running
Running
Kolumbus Lindh
commited on
Commit
·
05e61be
1
Parent(s):
9267889
gradio like/dislike
Browse files
gradio.py
CHANGED
@@ -2,21 +2,25 @@ import gradio as gr
|
|
2 |
import PyPDF2
|
3 |
import docx2txt
|
4 |
import re
|
5 |
-
import os
|
6 |
from typing import Optional
|
7 |
from datetime import datetime
|
8 |
|
9 |
-
#
|
10 |
from pinecone_handler import PineconeHandler
|
11 |
from time_handling import read_timestamp
|
12 |
from settings import DATE_FORMAT
|
13 |
|
14 |
# ------------------------------------------------------------------
|
15 |
-
#
|
16 |
# ------------------------------------------------------------------
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
18 |
def extract_text_from_pdf(pdf_file) -> str:
|
19 |
-
"""Extract text content from PDF file"""
|
20 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
21 |
text = ""
|
22 |
for page in pdf_reader.pages:
|
@@ -24,26 +28,20 @@ def extract_text_from_pdf(pdf_file) -> str:
|
|
24 |
return text
|
25 |
|
26 |
def extract_text_from_docx(docx_file) -> str:
|
27 |
-
"""Extract text content from DOCX file"""
|
28 |
text = docx2txt.process(docx_file)
|
29 |
return text
|
30 |
|
31 |
def extract_resume_text(uploaded_file) -> Optional[str]:
|
32 |
-
"""Extract text from uploaded resume file"""
|
33 |
if uploaded_file is None:
|
34 |
return None
|
35 |
|
36 |
-
# Extract filename from the Gradio file object
|
37 |
file_extension = uploaded_file.name.split('.')[-1].lower()
|
38 |
-
|
39 |
try:
|
40 |
if file_extension == 'pdf':
|
41 |
-
# Gradio’s uploaded_file is a tempfile-like object
|
42 |
return extract_text_from_pdf(uploaded_file)
|
43 |
elif file_extension in ['docx', 'doc']:
|
44 |
return extract_text_from_docx(uploaded_file.name)
|
45 |
elif file_extension == 'txt':
|
46 |
-
# Read entire text
|
47 |
return uploaded_file.read().decode("utf-8", errors="replace")
|
48 |
else:
|
49 |
return f"ERROR: Unsupported file format: {file_extension}"
|
@@ -51,7 +49,6 @@ def extract_resume_text(uploaded_file) -> Optional[str]:
|
|
51 |
return f"ERROR: {str(e)}"
|
52 |
|
53 |
def clean_resume_text(text: str) -> str:
|
54 |
-
"""Clean and process resume text"""
|
55 |
if not text:
|
56 |
return ""
|
57 |
# Remove special characters and extra whitespace
|
@@ -59,16 +56,14 @@ def clean_resume_text(text: str) -> str:
|
|
59 |
return text.strip()
|
60 |
|
61 |
def is_description_truncated(description: str) -> bool:
|
62 |
-
"""Check if the description appears to be truncated"""
|
63 |
truncation_indicators = [
|
64 |
-
lambda x: len(x) >= 995, #
|
65 |
lambda x: x.rstrip().endswith(('...', '…')),
|
66 |
lambda x: re.search(r'\w+$', x) and not re.search(r'[.!?]$', x),
|
67 |
]
|
68 |
return any(indicator(description) for indicator in truncation_indicators)
|
69 |
|
70 |
def format_job_description(description: str, truncated: bool = False) -> str:
|
71 |
-
"""Format job description text with sections, line breaks, etc."""
|
72 |
if not description:
|
73 |
return ""
|
74 |
|
@@ -82,15 +77,10 @@ def format_job_description(description: str, truncated: bool = False) -> str:
|
|
82 |
formatted_text = description
|
83 |
for section in sections:
|
84 |
pattern = re.compile(f'({section}:?)', re.IGNORECASE)
|
85 |
-
formatted_text = pattern.sub(r'\n\n
|
86 |
|
87 |
-
# Handle bullet points
|
88 |
formatted_text = re.sub(r'[•-]\s*', '\n• ', formatted_text)
|
89 |
-
|
90 |
-
# Add line breaks for sentences that look like list items
|
91 |
formatted_text = re.sub(r'(?<=\w)\.(?=\s*[A-Z])', '.\n', formatted_text)
|
92 |
-
|
93 |
-
# Reduce triple+ newlines to double
|
94 |
formatted_text = re.sub(r'\n{3,}', '\n\n', formatted_text)
|
95 |
|
96 |
if truncated:
|
@@ -98,128 +88,189 @@ def format_job_description(description: str, truncated: bool = False) -> str:
|
|
98 |
|
99 |
return formatted_text.strip()
|
100 |
|
|
|
101 |
# ------------------------------------------------------------------
|
102 |
-
#
|
103 |
# ------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
|
105 |
def search_jobs(resume_file, num_results, city_filter):
|
106 |
"""
|
107 |
1) Extract + clean resume
|
108 |
2) Query Pinecone
|
109 |
-
3)
|
110 |
-
4) Return
|
111 |
"""
|
112 |
-
#
|
|
|
|
|
|
|
113 |
if resume_file is None:
|
114 |
return "Please upload a resume first."
|
115 |
-
|
116 |
resume_text = extract_resume_text(resume_file)
|
117 |
if resume_text is None or resume_text.startswith("ERROR"):
|
118 |
return f"Error processing file: {resume_text}"
|
119 |
-
|
120 |
clean_text = clean_resume_text(resume_text)
|
121 |
if not clean_text:
|
122 |
return "No text extracted from resume or file is invalid."
|
123 |
-
|
124 |
-
#
|
125 |
-
try:
|
126 |
-
handler = PineconeHandler()
|
127 |
-
except Exception as e:
|
128 |
-
return f"Error connecting to Pinecone: {str(e)}"
|
129 |
-
|
130 |
-
# Attempt to read timestamp for “Database Status”
|
131 |
-
database_info = ""
|
132 |
try:
|
133 |
last_update = read_timestamp()
|
134 |
last_update_dt = datetime.strptime(last_update, DATE_FORMAT)
|
135 |
-
|
136 |
except Exception as e:
|
137 |
-
|
138 |
-
|
139 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
try:
|
141 |
results = handler.search_similar_ads(
|
142 |
clean_text, top_k=num_results, city=city_filter.strip()
|
143 |
)
|
144 |
except Exception as e:
|
145 |
-
return f"{
|
146 |
-
|
147 |
if not results:
|
148 |
-
return f"{
|
149 |
-
|
150 |
-
#
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
for i, match in enumerate(results, 1):
|
156 |
metadata = match.metadata
|
157 |
score = match.score
|
158 |
|
159 |
-
#
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
182 |
)
|
183 |
-
if
|
184 |
-
|
185 |
-
|
186 |
-
output_lines.append(f"**Contact:** {metadata['email']}")
|
187 |
-
output_lines.append("---")
|
188 |
|
189 |
-
|
|
|
|
|
190 |
|
191 |
|
192 |
# ------------------------------------------------------------------
|
193 |
-
# Build
|
194 |
# ------------------------------------------------------------------
|
|
|
|
|
|
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
)
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
)
|
212 |
-
|
213 |
-
search_button = gr.Button("Search Jobs")
|
214 |
-
output_box = gr.Markdown()
|
215 |
|
216 |
-
|
217 |
-
search_button.click(
|
218 |
-
fn=search_jobs,
|
219 |
-
inputs=[resume_input, num_results_slider, city_input],
|
220 |
-
outputs=[output_box]
|
221 |
-
)
|
222 |
|
223 |
|
224 |
if __name__ == "__main__":
|
225 |
-
|
|
|
|
2 |
import PyPDF2
|
3 |
import docx2txt
|
4 |
import re
|
|
|
5 |
from typing import Optional
|
6 |
from datetime import datetime
|
7 |
|
8 |
+
# --- Import your custom modules
|
9 |
from pinecone_handler import PineconeHandler
|
10 |
from time_handling import read_timestamp
|
11 |
from settings import DATE_FORMAT
|
12 |
|
13 |
# ------------------------------------------------------------------
|
14 |
+
# Global or session-level store for job data
|
15 |
# ------------------------------------------------------------------
|
16 |
+
MAX_RESULTS = 10 # Up to 10 job ads displayed
|
17 |
+
JOBS_CACHE = [None] * MAX_RESULTS # Each element will hold (ad_id, ad_metadata, full_resume_text)
|
18 |
|
19 |
+
|
20 |
+
# ------------------------------------------------------------------
|
21 |
+
# Helper functions (same as your original ones)
|
22 |
+
# ------------------------------------------------------------------
|
23 |
def extract_text_from_pdf(pdf_file) -> str:
|
|
|
24 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
25 |
text = ""
|
26 |
for page in pdf_reader.pages:
|
|
|
28 |
return text
|
29 |
|
30 |
def extract_text_from_docx(docx_file) -> str:
|
|
|
31 |
text = docx2txt.process(docx_file)
|
32 |
return text
|
33 |
|
34 |
def extract_resume_text(uploaded_file) -> Optional[str]:
|
|
|
35 |
if uploaded_file is None:
|
36 |
return None
|
37 |
|
|
|
38 |
file_extension = uploaded_file.name.split('.')[-1].lower()
|
|
|
39 |
try:
|
40 |
if file_extension == 'pdf':
|
|
|
41 |
return extract_text_from_pdf(uploaded_file)
|
42 |
elif file_extension in ['docx', 'doc']:
|
43 |
return extract_text_from_docx(uploaded_file.name)
|
44 |
elif file_extension == 'txt':
|
|
|
45 |
return uploaded_file.read().decode("utf-8", errors="replace")
|
46 |
else:
|
47 |
return f"ERROR: Unsupported file format: {file_extension}"
|
|
|
49 |
return f"ERROR: {str(e)}"
|
50 |
|
51 |
def clean_resume_text(text: str) -> str:
|
|
|
52 |
if not text:
|
53 |
return ""
|
54 |
# Remove special characters and extra whitespace
|
|
|
56 |
return text.strip()
|
57 |
|
58 |
def is_description_truncated(description: str) -> bool:
|
|
|
59 |
truncation_indicators = [
|
60 |
+
lambda x: len(x) >= 995, # close to 1000 char limit
|
61 |
lambda x: x.rstrip().endswith(('...', '…')),
|
62 |
lambda x: re.search(r'\w+$', x) and not re.search(r'[.!?]$', x),
|
63 |
]
|
64 |
return any(indicator(description) for indicator in truncation_indicators)
|
65 |
|
66 |
def format_job_description(description: str, truncated: bool = False) -> str:
|
|
|
67 |
if not description:
|
68 |
return ""
|
69 |
|
|
|
77 |
formatted_text = description
|
78 |
for section in sections:
|
79 |
pattern = re.compile(f'({section}:?)', re.IGNORECASE)
|
80 |
+
formatted_text = pattern.sub(r'\n\n\\1', formatted_text)
|
81 |
|
|
|
82 |
formatted_text = re.sub(r'[•-]\s*', '\n• ', formatted_text)
|
|
|
|
|
83 |
formatted_text = re.sub(r'(?<=\w)\.(?=\s*[A-Z])', '.\n', formatted_text)
|
|
|
|
|
84 |
formatted_text = re.sub(r'\n{3,}', '\n\n', formatted_text)
|
85 |
|
86 |
if truncated:
|
|
|
88 |
|
89 |
return formatted_text.strip()
|
90 |
|
91 |
+
|
92 |
# ------------------------------------------------------------------
|
93 |
+
# Callback for Like/Dislike
|
94 |
# ------------------------------------------------------------------
|
95 |
+
def user_interaction(index_in_cache, action):
|
96 |
+
"""
|
97 |
+
index_in_cache: which job row's button was clicked (0..MAX_RESULTS-1)
|
98 |
+
action: 'like' or 'dislike'
|
99 |
+
|
100 |
+
We'll retrieve:
|
101 |
+
- ad_id
|
102 |
+
- resume_text
|
103 |
+
- possibly do something with them (e.g. store in DB)
|
104 |
+
"""
|
105 |
+
if index_in_cache < 0 or index_in_cache >= MAX_RESULTS:
|
106 |
+
return "Invalid job index."
|
107 |
+
|
108 |
+
cached = JOBS_CACHE[index_in_cache]
|
109 |
+
if not cached:
|
110 |
+
return "No job data at this slot."
|
111 |
+
|
112 |
+
ad_id, metadata, full_resume_text = cached
|
113 |
+
|
114 |
+
# Example logging or storing
|
115 |
+
# In reality, you might store this info in a database or call an API
|
116 |
+
print(f"[USER_INTERACTION] Action={action}, AdID={ad_id}, CV length={len(full_resume_text)} chars.")
|
117 |
+
|
118 |
+
return f"You {action}d job {ad_id}."
|
119 |
|
120 |
+
|
121 |
+
# ------------------------------------------------------------------
|
122 |
+
# Callback to search jobs
|
123 |
+
# ------------------------------------------------------------------
|
124 |
def search_jobs(resume_file, num_results, city_filter):
|
125 |
"""
|
126 |
1) Extract + clean resume
|
127 |
2) Query Pinecone
|
128 |
+
3) Populate the placeholders for up to MAX_RESULTS job ads
|
129 |
+
4) Return status message
|
130 |
"""
|
131 |
+
# Clear out global cache
|
132 |
+
for i in range(MAX_RESULTS):
|
133 |
+
JOBS_CACHE[i] = None
|
134 |
+
|
135 |
if resume_file is None:
|
136 |
return "Please upload a resume first."
|
137 |
+
|
138 |
resume_text = extract_resume_text(resume_file)
|
139 |
if resume_text is None or resume_text.startswith("ERROR"):
|
140 |
return f"Error processing file: {resume_text}"
|
141 |
+
|
142 |
clean_text = clean_resume_text(resume_text)
|
143 |
if not clean_text:
|
144 |
return "No text extracted from resume or file is invalid."
|
145 |
+
|
146 |
+
# Attempt to read the database update time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
try:
|
148 |
last_update = read_timestamp()
|
149 |
last_update_dt = datetime.strptime(last_update, DATE_FORMAT)
|
150 |
+
db_info = f"**Database last update:** {last_update_dt.strftime('%B %d, %Y at %I:%M %p')} (Stockholm Time)\n\n"
|
151 |
except Exception as e:
|
152 |
+
db_info = f"Error reading timestamp: {str(e)}\n\n"
|
153 |
+
|
154 |
+
# Pinecone init
|
155 |
+
try:
|
156 |
+
handler = PineconeHandler()
|
157 |
+
except Exception as e:
|
158 |
+
return f"{db_info}Error connecting to Pinecone: {str(e)}"
|
159 |
+
|
160 |
+
# Search
|
161 |
try:
|
162 |
results = handler.search_similar_ads(
|
163 |
clean_text, top_k=num_results, city=city_filter.strip()
|
164 |
)
|
165 |
except Exception as e:
|
166 |
+
return f"{db_info}Error searching jobs: {str(e)}"
|
167 |
+
|
168 |
if not results:
|
169 |
+
return f"{db_info}No matching jobs found."
|
170 |
+
|
171 |
+
# Fill up to MAX_RESULTS
|
172 |
+
text_output = [db_info + f"**Found {len(results)} matching jobs:**\n"]
|
173 |
+
|
174 |
+
for i, match in enumerate(results[:MAX_RESULTS]):
|
|
|
|
|
175 |
metadata = match.metadata
|
176 |
score = match.score
|
177 |
|
178 |
+
# We'll store data in our global JOBS_CACHE so user_interaction can retrieve it
|
179 |
+
# You might have an 'id' or something in metadata that you treat as the ad_id
|
180 |
+
ad_id = str(metadata.get('job_id', f"Unknown_{i}"))
|
181 |
+
JOBS_CACHE[i] = (ad_id, metadata, clean_text)
|
182 |
+
|
183 |
+
headline = metadata.get('headline', 'Untitled')
|
184 |
+
city = metadata.get('city', 'Unknown City')
|
185 |
+
occupation = metadata.get('occupation', 'Unknown Occupation')
|
186 |
+
published = metadata.get('published', 'Unknown Date')
|
187 |
+
desc = metadata.get('description', '')
|
188 |
+
truncated = is_description_truncated(desc)
|
189 |
+
snippet = desc[:2000] if truncated else desc
|
190 |
+
formatted_desc = format_job_description(snippet, truncated=truncated)
|
191 |
+
|
192 |
+
text_output.append(f"### {i+1}. {headline}")
|
193 |
+
text_output.append(f"**Ad ID**: `{ad_id}`")
|
194 |
+
text_output.append(f"**Match Score (Cosine)**: {score:.2f}")
|
195 |
+
text_output.append(f"**Location**: {city}")
|
196 |
+
text_output.append(f"**Occupation**: {occupation}")
|
197 |
+
text_output.append(f"**Published**: {published}")
|
198 |
+
text_output.append(formatted_desc or "*No description*")
|
199 |
+
|
200 |
+
if truncated:
|
201 |
+
text_output.append(
|
202 |
+
"> **Note**: Description truncated. See original link for full details."
|
203 |
)
|
204 |
+
if 'webpage_url' in metadata:
|
205 |
+
text_output.append(f"[View Original]({metadata['webpage_url']})")
|
|
|
|
|
|
|
206 |
|
207 |
+
text_output.append("---")
|
208 |
+
|
209 |
+
return "\n".join(text_output)
|
210 |
|
211 |
|
212 |
# ------------------------------------------------------------------
|
213 |
+
# Build Gradio interface
|
214 |
# ------------------------------------------------------------------
|
215 |
+
def build_interface():
|
216 |
+
with gr.Blocks() as demo:
|
217 |
+
gr.Markdown("# AI-Powered Job Search (Gradio with Like/Dislike)")
|
218 |
|
219 |
+
with gr.Row():
|
220 |
+
resume_input = gr.File(label="Upload your resume (PDF, DOCX, DOC, or TXT)")
|
221 |
+
num_results_slider = gr.Slider(
|
222 |
+
minimum=1, maximum=MAX_RESULTS, value=5,
|
223 |
+
step=1, label="Number of results"
|
224 |
+
)
|
225 |
+
city_input = gr.Textbox(
|
226 |
+
label="Filter by city (optional)",
|
227 |
+
placeholder="Enter a city to filter job results by location"
|
228 |
+
)
|
229 |
+
|
230 |
+
search_button = gr.Button("Search Jobs")
|
231 |
+
results_markdown = gr.Markdown()
|
232 |
+
|
233 |
+
# We create up to MAX_RESULTS rows for like/dislike
|
234 |
+
# Each row has two buttons that map to user_interaction
|
235 |
+
# We'll label them with the index so we can pass it to user_interaction
|
236 |
+
output_messages = []
|
237 |
+
for i in range(MAX_RESULTS):
|
238 |
+
with gr.Row(visible=True) as row_i:
|
239 |
+
# Each row: "Like" & "Dislike"
|
240 |
+
btn_like = gr.Button(f"Like #{i+1}", variant="secondary", visible=True)
|
241 |
+
btn_dislike = gr.Button(f"Dislike #{i+1}", variant="secondary", visible=True)
|
242 |
+
|
243 |
+
# user_interaction callback => returns a small message
|
244 |
+
msg = gr.Markdown(visible=True)
|
245 |
+
output_messages.append(msg)
|
246 |
+
|
247 |
+
# Wire the buttons to user_interaction
|
248 |
+
# We pass:
|
249 |
+
# - The index in the JOBS_CACHE
|
250 |
+
# - The literal string 'like' or 'dislike'
|
251 |
+
# The function returns a small text update
|
252 |
+
btn_like.click(
|
253 |
+
fn=user_interaction,
|
254 |
+
inputs=[gr.State(i), gr.State("like")],
|
255 |
+
outputs=[msg]
|
256 |
+
)
|
257 |
+
btn_dislike.click(
|
258 |
+
fn=user_interaction,
|
259 |
+
inputs=[gr.State(i), gr.State("dislike")],
|
260 |
+
outputs=[msg]
|
261 |
+
)
|
262 |
+
|
263 |
+
# On search click => call search_jobs
|
264 |
+
# outputs => results_markdown (which displays the job list)
|
265 |
+
search_button.click(
|
266 |
+
fn=search_jobs,
|
267 |
+
inputs=[resume_input, num_results_slider, city_input],
|
268 |
+
outputs=[results_markdown]
|
269 |
)
|
|
|
|
|
|
|
270 |
|
271 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
|
274 |
if __name__ == "__main__":
|
275 |
+
demo_app = build_interface()
|
276 |
+
demo_app.launch()
|