import spaces import gradio as gr import numpy as np #import tensorrt as trt import random import torch from diffusers import StableDiffusion3Pipeline, AutoencoderKL, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer from threading import Thread from transformers import pipeline from transformers import T5Tokenizer, T5ForConditionalGeneration import re import paramiko import urllib import time import os FTP_HOST = "1ink.us" FTP_USER = "ford442" FTP_PASS = "GoogleBez12!" FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False torch.backends.cuda.preferred_blas_library="cublas" torch.backends.cuda.preferred_linalg_library="cusolver" torch.set_float32_matmul_precision("highest") hftoken = os.getenv("HF_AUTH_TOKEN") def upload_to_ftp(filename): try: transport = paramiko.Transport((FTP_HOST, 22)) destination_path=FTP_DIR+filename transport.connect(username = FTP_USER, password = FTP_PASS) sftp = paramiko.SFTPClient.from_transport(transport) sftp.put(filename, destination_path) sftp.close() transport.close() print(f"Uploaded {filename} to FTP server") except Exception as e: print(f"FTP upload error: {e}") device = torch.device("cuda") torch_dtype = torch.bfloat16 checkpoint = "microsoft/Phi-3.5-mini-instruct" #vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16, device_map='balanced') pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", torch_dtype=torch.bfloat16) #pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced') # pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++") #pipe.scheduler.config.requires_aesthetics_score = False #pipe.enable_model_cpu_offload() pipe.to(device=device, dtype=torch.bfloat16) #pipe = torch.compile(pipe) # pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear") refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True, requires_aesthetics_score=True, device_map='balanced') #refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced') #refiner.enable_model_cpu_offload() #refiner.scheduler.config.requires_aesthetics_score=False #refiner.to(device) #refiner = torch.compile(refiner) refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear") tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced') tokenizer.tokenizer_legacy=False model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced') #model = torch.compile(model) def filter_text(text): """Filters out the text up to and including 'Rewritten Prompt:'.""" phrase = "Rewritten Prompt: " pattern = f"(.*?){re.escape(phrase)}(.*)" match = re.search(pattern, text) # match = re.search(pattern, text,flags=re.DOTALL) # filtered_text = match.group(2) return text MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 4096 @spaces.GPU(duration=90) def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): seed = random.randint(0, MAX_SEED) generator = torch.Generator(device='cpu').manual_seed(seed) system_prompt_rewrite = ( "You are an AI assistant that rewrites image prompts to be more descriptive and detailed." ) user_prompt_rewrite = ( "Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: " ) input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}" print("-- got prompt --") # Encode the input text and include the attention mask encoded_inputs = tokenizer( input_text, return_tensors="pt", return_attention_mask=True ) # Ensure all values are on the correct device input_ids = encoded_inputs["input_ids"].to(device) attention_mask = encoded_inputs["attention_mask"].to(device) print("-- tokenize prompt --") # Google T5 input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=65, temperature=0.2, top_p=0.9, do_sample=True, ) # Use the encoded tensor 'text_inputs' here enhanced_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True) print('-- generated prompt --') print(enhanced_prompt) enhanced_prompt = filter_text(enhanced_prompt) print('-- filtered prompt --') print(enhanced_prompt) print('-- generating image --') with torch.no_grad(): sd_image = pipe( prompt=enhanced_prompt, # This conversion is fine negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] print('-- got image --') image_path = f"sd35m_{seed}.png" sd_image.save(image_path,optimize=False,compress_level=0) upload_to_ftp(image_path) refine = refiner( prompt=f"{prompt}, high quality masterpiece, complex details", negative_prompt = negative_prompt, guidance_scale=7.5, num_inference_steps=num_inference_steps, image=sd_image, generator=generator, ).images[0] refine_path = f"refine_{seed}.png" refine.save(refine_path,optimize=False,compress_level=0) upload_to_ftp(refine_path) return refine, seed, refine_path, enhanced_prompt examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ def repeat_infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_iterations, # New input for number of iterations ): i = 0 while i < num_iterations: time.sleep(700) # Wait for 10 minutes (600 seconds) result, seed, image_path, enhanced_prompt = infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ) # Optionally, you can add logic here to process the results of each iteration # For example, you could display the image, save it with a different name, etc. i += 1 return result, seed, image_path, enhanced_prompt with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Text-to-Image StableDiffusion 3.5 Medium (with refine)") expanded_prompt_output = gr.Textbox(label="Expanded Prompt", lines=5) # Add this line gr.File(label="Latents File (optional)"), # Add a file input for latents with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", value="A captivating Christmas scene.", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) num_iterations = gr.Number( value=1000, label="Number of Iterations") seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768, # Replace with defaults that work for your model ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=4.2, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=500, step=1, value=75, # Replace with defaults that work for your model ) save_button = gr.Button("Save Image") image_path_output = gr.Text(visible=False) # Hidden component to store the path save_button.click( fn=lambda image_path: None, # No-op function, the path is already available inputs=[image_path_output], outputs=None, ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed, image_path_output, expanded_prompt_output], ) if __name__ == "__main__": demo.launch()