Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -71,11 +71,11 @@ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffu
|
|
71 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
72 |
|
73 |
#refiner.enable_model_cpu_offload()
|
|
|
74 |
|
75 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
76 |
refiner.to(device)
|
77 |
#refiner = torch.compile(refiner)
|
78 |
-
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
79 |
|
80 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
81 |
tokenizer.tokenizer_legacy=False
|
@@ -168,6 +168,7 @@ def infer(
|
|
168 |
image_path = f"sd35m_{seed}.png"
|
169 |
sd_image.save(image_path,optimize=False,compress_level=0)
|
170 |
upload_to_ftp(image_path)
|
|
|
171 |
refine = refiner(
|
172 |
prompt=f"{prompt}, high quality masterpiece, complex details",
|
173 |
negative_prompt = negative_prompt,
|
|
|
71 |
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
|
72 |
|
73 |
#refiner.enable_model_cpu_offload()
|
74 |
+
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
75 |
|
76 |
#refiner.scheduler.config.requires_aesthetics_score=False
|
77 |
refiner.to(device)
|
78 |
#refiner = torch.compile(refiner)
|
|
|
79 |
|
80 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
|
81 |
tokenizer.tokenizer_legacy=False
|
|
|
168 |
image_path = f"sd35m_{seed}.png"
|
169 |
sd_image.save(image_path,optimize=False,compress_level=0)
|
170 |
upload_to_ftp(image_path)
|
171 |
+
refiner.scheduler.set_timesteps(num_inference_steps,device)
|
172 |
refine = refiner(
|
173 |
prompt=f"{prompt}, high quality masterpiece, complex details",
|
174 |
negative_prompt = negative_prompt,
|