Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -203,19 +203,9 @@ def infer(
|
|
203 |
# Encode the generated image into latents
|
204 |
with torch.no_grad():
|
205 |
generated_latents = vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
206 |
-
|
207 |
-
batch_size=1,
|
208 |
-
num_channels_latents=pipe.transformer.in_channels,
|
209 |
-
height=pipe.transformer.config.sample_size[0],
|
210 |
-
width=pipe.transformer.config.sample_size[1],
|
211 |
-
dtype=pipe.transformer.dtype,
|
212 |
-
device=pipe.device,
|
213 |
-
generator=generator,
|
214 |
-
)
|
215 |
-
initial_latents += generated_latents
|
216 |
-
latent_path = f"sd35m_{seed}.pt"
|
217 |
# Save the latents to a .pt file
|
218 |
-
torch.save(
|
219 |
upload_to_ftp(latent_path)
|
220 |
#refiner.scheduler.set_timesteps(num_inference_steps,device)
|
221 |
refine = refiner(
|
|
|
203 |
# Encode the generated image into latents
|
204 |
with torch.no_grad():
|
205 |
generated_latents = vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
206 |
+
latent_path = f"sd35m_{seed}.pt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
# Save the latents to a .pt file
|
208 |
+
torch.save(generated_latents, latent_path)
|
209 |
upload_to_ftp(latent_path)
|
210 |
#refiner.scheduler.set_timesteps(num_inference_steps,device)
|
211 |
refine = refiner(
|