Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -36,9 +36,9 @@ torch.backends.cuda.preferred_blas_library="cublas"
|
|
36 |
|
37 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
38 |
|
39 |
-
image_encoder_path = "google/siglip-so400m-patch14-384"
|
40 |
-
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
41 |
-
model_path = 'ford442/stable-diffusion-3.5-medium-bf16'
|
42 |
|
43 |
def upload_to_ftp(filename):
|
44 |
try:
|
@@ -56,7 +56,7 @@ def upload_to_ftp(filename):
|
|
56 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
57 |
torch_dtype = torch.bfloat16
|
58 |
|
59 |
-
checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
60 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
61 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
@@ -102,9 +102,9 @@ pipe.to(device=device, dtype=torch.bfloat16)
|
|
102 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
103 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
104 |
|
105 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=True)
|
106 |
-
tokenizer.tokenizer_legacy=False
|
107 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint).to('cuda')
|
108 |
#model = torch.compile(model)
|
109 |
|
110 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
@@ -153,6 +153,7 @@ def infer(
|
|
153 |
torch.set_float32_matmul_precision("highest")
|
154 |
seed = random.randint(0, MAX_SEED)
|
155 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
156 |
if expanded:
|
157 |
system_prompt_rewrite = (
|
158 |
"You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
|
@@ -204,9 +205,10 @@ def infer(
|
|
204 |
print('-- filtered prompt 2 --')
|
205 |
print(enhanced_prompt_2)
|
206 |
else:
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
210 |
if latent_file: # Check if a latent file is provided
|
211 |
# initial_latents = pipe.prepare_latents(
|
212 |
# batch_size=1,
|
|
|
36 |
|
37 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
38 |
|
39 |
+
#image_encoder_path = "google/siglip-so400m-patch14-384"
|
40 |
+
#ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
41 |
+
#model_path = 'ford442/stable-diffusion-3.5-medium-bf16'
|
42 |
|
43 |
def upload_to_ftp(filename):
|
44 |
try:
|
|
|
56 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
57 |
torch_dtype = torch.bfloat16
|
58 |
|
59 |
+
#checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
60 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
61 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
|
|
102 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
|
103 |
#refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
|
104 |
|
105 |
+
#tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=True)
|
106 |
+
#tokenizer.tokenizer_legacy=False
|
107 |
+
#model = AutoModelForCausalLM.from_pretrained(checkpoint).to('cuda')
|
108 |
#model = torch.compile(model)
|
109 |
|
110 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
|
|
153 |
torch.set_float32_matmul_precision("highest")
|
154 |
seed = random.randint(0, MAX_SEED)
|
155 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
156 |
+
'''
|
157 |
if expanded:
|
158 |
system_prompt_rewrite = (
|
159 |
"You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
|
|
|
205 |
print('-- filtered prompt 2 --')
|
206 |
print(enhanced_prompt_2)
|
207 |
else:
|
208 |
+
'''
|
209 |
+
enhanced_prompt = prompt
|
210 |
+
enhanced_prompt_2 = prompt
|
211 |
+
#model.to('cpu')
|
212 |
if latent_file: # Check if a latent file is provided
|
213 |
# initial_latents = pipe.prepare_latents(
|
214 |
# batch_size=1,
|