ford442 commited on
Commit
5c874a7
·
verified ·
1 Parent(s): b05ba5b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -53,20 +53,20 @@ torch_dtype = torch.bfloat16
53
 
54
  checkpoint = "microsoft/Phi-3.5-mini-instruct"
55
  #vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
56
- vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16, device_map='balanced')
57
 
58
- pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", torch_dtype=torch.bfloat16, device_map='balanced')
59
  #pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
60
 
61
  # pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
62
 
63
  #pipe.scheduler.config.requires_aesthetics_score = False
64
  #pipe.enable_model_cpu_offload()
65
- #pipe.to(device)
66
  #pipe = torch.compile(pipe)
67
- # pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
68
 
69
- refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True, requires_aesthetics_score=True, device_map='balanced')
70
  #refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
71
 
72
  #refiner.enable_model_cpu_offload()
@@ -74,7 +74,7 @@ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffu
74
  #refiner.scheduler.config.requires_aesthetics_score=False
75
  #refiner.to(device)
76
  #refiner = torch.compile(refiner)
77
- refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
78
 
79
  tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
80
  tokenizer.tokenizer_legacy=False
@@ -90,7 +90,7 @@ def filter_text(text):
90
  MAX_SEED = np.iinfo(np.int32).max
91
  MAX_IMAGE_SIZE = 4096
92
 
93
- @spaces.GPU(duration=80)
94
  def infer(
95
  prompt,
96
  negative_prompt,
 
53
 
54
  checkpoint = "microsoft/Phi-3.5-mini-instruct"
55
  #vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
56
+ vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16)
57
 
58
+ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", torch_dtype=torch.bfloat16)
59
  #pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
60
 
61
  # pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
62
 
63
  #pipe.scheduler.config.requires_aesthetics_score = False
64
  #pipe.enable_model_cpu_offload()
65
+ pipe.to(device)
66
  #pipe = torch.compile(pipe)
67
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="sde-dpmsolver++")
68
 
69
+ #refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True, requires_aesthetics_score=True, device_map='balanced')
70
  #refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
71
 
72
  #refiner.enable_model_cpu_offload()
 
74
  #refiner.scheduler.config.requires_aesthetics_score=False
75
  #refiner.to(device)
76
  #refiner = torch.compile(refiner)
77
+ #refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")
78
 
79
  tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
80
  tokenizer.tokenizer_legacy=False
 
90
  MAX_SEED = np.iinfo(np.int32).max
91
  MAX_IMAGE_SIZE = 4096
92
 
93
+ @spaces.GPU(duration=90)
94
  def infer(
95
  prompt,
96
  negative_prompt,