ford442 commited on
Commit
51b868e
·
1 Parent(s): cf0fe80

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -106,16 +106,18 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
106
  def load_and_prepare_model(model_id):
107
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
108
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
109
- vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,use_safetensors=True,safety_checker=None)
110
  #vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",safety_checker=None)
111
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
112
  # vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
 
113
  pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",torch_dtype=torch.float32)
 
114
  pipe = StableDiffusionXLPipeline.from_pretrained(
115
  model_id,
116
  torch_dtype=torch.bfloat16,
117
  add_watermarker=False,
118
- use_safetensors=True,
119
  # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
120
  # vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
121
  # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
@@ -126,14 +128,15 @@ def load_and_prepare_model(model_id):
126
  )
127
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
128
  #pipe.to('cuda')
129
- pipe.vae=vae
 
130
  # pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
131
  #pipe.to(dtype=torch.bfloat16)
132
  pipe.unet = pipeX.unet
133
  pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
134
- pipe.to(device)
135
  pipe.unet.to(torch.bfloat16)
136
- pipe.vae.to(torch.bfloat16)
 
137
  #pipe.to(torch.bfloat16)
138
  #pipe.to(device, torch.bfloat16)
139
  del pipeX
 
106
  def load_and_prepare_model(model_id):
107
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
108
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
109
+ #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None)
110
  #vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",safety_checker=None)
111
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
112
  # vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
113
+
114
  pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",torch_dtype=torch.float32)
115
+ #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",torch_dtype=torch.float32)
116
  pipe = StableDiffusionXLPipeline.from_pretrained(
117
  model_id,
118
  torch_dtype=torch.bfloat16,
119
  add_watermarker=False,
120
+ # use_safetensors=True,
121
  # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
122
  # vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
123
  # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
 
128
  )
129
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
130
  #pipe.to('cuda')
131
+ #pipe.vae=vae
132
+ #pipe.vae=pipeX.vae
133
  # pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
134
  #pipe.to(dtype=torch.bfloat16)
135
  pipe.unet = pipeX.unet
136
  pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
 
137
  pipe.unet.to(torch.bfloat16)
138
+ pipe.to(device)
139
+ #pipe.vae.to(torch.bfloat16)
140
  #pipe.to(torch.bfloat16)
141
  #pipe.to(device, torch.bfloat16)
142
  del pipeX