Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -108,7 +108,7 @@ def load_and_prepare_model(model_id):
|
|
| 108 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 109 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 110 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None)
|
| 111 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",safety_checker=None)
|
| 112 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 113 |
# vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
|
| 114 |
#sched = EulerAncestralDiscreteScheduler.from_config('ford442/Juggernaut-XI-v11-fp32', subfolder='scheduler',beta_schedule="scaled_linear",use_karras_sigmas=True)
|
|
@@ -145,7 +145,7 @@ def load_and_prepare_model(model_id):
|
|
| 145 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 146 |
#pipe.unet.to(torch.bfloat16)
|
| 147 |
pipe.to(device)
|
| 148 |
-
pipe.to(torch.bfloat16)
|
| 149 |
|
| 150 |
#pipe.to(torch.device("cuda:0"))
|
| 151 |
#pipe.vae.to(torch.bfloat16)
|
|
@@ -235,7 +235,7 @@ def generate_30(
|
|
| 235 |
f.write(f"SPACE SETUP: \n")
|
| 236 |
f.write(f"Use Model Dtype: no \n")
|
| 237 |
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 238 |
-
f.write(f"Model VAE:
|
| 239 |
f.write(f"Model UNET: default \n")
|
| 240 |
upload_to_ftp(filename)
|
| 241 |
for i in range(0, num_images, BATCH_SIZE):
|
|
@@ -301,7 +301,7 @@ def generate_60(
|
|
| 301 |
f.write(f"SPACE SETUP: \n")
|
| 302 |
f.write(f"Use Model Dtype: no \n")
|
| 303 |
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 304 |
-
f.write(f"Model VAE:
|
| 305 |
f.write(f"Model UNET: default \n")
|
| 306 |
upload_to_ftp(filename)
|
| 307 |
for i in range(0, num_images, BATCH_SIZE):
|
|
@@ -367,7 +367,7 @@ def generate_90(
|
|
| 367 |
f.write(f"SPACE SETUP: \n")
|
| 368 |
f.write(f"Use Model Dtype: no \n")
|
| 369 |
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 370 |
-
f.write(f"Model VAE:
|
| 371 |
f.write(f"Model UNET: default \n")
|
| 372 |
upload_to_ftp(filename)
|
| 373 |
for i in range(0, num_images, BATCH_SIZE):
|
|
|
|
| 108 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 109 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 110 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None)
|
| 111 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",safety_checker=None).to(torch.bfloat16)
|
| 112 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
| 113 |
# vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
|
| 114 |
#sched = EulerAncestralDiscreteScheduler.from_config('ford442/Juggernaut-XI-v11-fp32', subfolder='scheduler',beta_schedule="scaled_linear",use_karras_sigmas=True)
|
|
|
|
| 145 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
| 146 |
#pipe.unet.to(torch.bfloat16)
|
| 147 |
pipe.to(device)
|
| 148 |
+
#pipe.to(torch.bfloat16)
|
| 149 |
|
| 150 |
#pipe.to(torch.device("cuda:0"))
|
| 151 |
#pipe.vae.to(torch.bfloat16)
|
|
|
|
| 235 |
f.write(f"SPACE SETUP: \n")
|
| 236 |
f.write(f"Use Model Dtype: no \n")
|
| 237 |
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 238 |
+
f.write(f"Model VAE: sdxl_vae to bfloat before cuda \n")
|
| 239 |
f.write(f"Model UNET: default \n")
|
| 240 |
upload_to_ftp(filename)
|
| 241 |
for i in range(0, num_images, BATCH_SIZE):
|
|
|
|
| 301 |
f.write(f"SPACE SETUP: \n")
|
| 302 |
f.write(f"Use Model Dtype: no \n")
|
| 303 |
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 304 |
+
f.write(f"Model VAE: sdxl_vae to bfloat before cuda \n")
|
| 305 |
f.write(f"Model UNET: default \n")
|
| 306 |
upload_to_ftp(filename)
|
| 307 |
for i in range(0, num_images, BATCH_SIZE):
|
|
|
|
| 367 |
f.write(f"SPACE SETUP: \n")
|
| 368 |
f.write(f"Use Model Dtype: no \n")
|
| 369 |
f.write(f"Model Scheduler: Euler_a custom before cuda \n")
|
| 370 |
+
f.write(f"Model VAE: sdxl_vae to bfloat before cuda \n")
|
| 371 |
f.write(f"Model UNET: default \n")
|
| 372 |
upload_to_ftp(filename)
|
| 373 |
for i in range(0, num_images, BATCH_SIZE):
|