Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -104,6 +104,7 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
|
|
104 |
if not negative:
|
105 |
negative = ""
|
106 |
return p.replace("{prompt}", positive), n + negative
|
|
|
107 |
def load_and_prepare_model(model_id):
|
108 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
109 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
@@ -210,25 +211,22 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
210 |
seed = random.randint(0, MAX_SEED)
|
211 |
return seed
|
212 |
|
213 |
-
def uploadNote():
|
214 |
-
|
215 |
-
filename= f'tst_B_{seed}.txt'
|
216 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
217 |
with open(filename, "w") as f:
|
218 |
-
f.write(f"Realvis 5.0 (Tester
|
219 |
f.write(f"Date/time: {timestamp} \n")
|
220 |
f.write(f"Prompt: {prompt} \n")
|
221 |
f.write(f"Steps: {num_inference_steps} \n")
|
222 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
223 |
f.write(f"SPACE SETUP: \n")
|
224 |
f.write(f"Use Model Dtype: no \n")
|
225 |
-
f.write(f"Model Scheduler: Euler_a all_custom before cuda
|
226 |
-
f.write(f"Model VAE: sdxl-vae
|
227 |
-
f.write(f"Model UNET: default
|
228 |
f.write(f"Model HiDiffusion OFF \n")
|
229 |
-
f.write(f"Model do_resize
|
230 |
-
f.write(f"
|
231 |
-
f.write(f"now added packages.txt \n")
|
232 |
upload_to_ftp(filename)
|
233 |
|
234 |
@spaces.GPU(duration=30)
|
@@ -271,7 +269,8 @@ def generate_30(
|
|
271 |
options["use_resolution_binning"] = True
|
272 |
images = []
|
273 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
274 |
-
|
|
|
275 |
for i in range(0, num_images, BATCH_SIZE):
|
276 |
batch_options = options.copy()
|
277 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
@@ -326,7 +325,8 @@ def generate_60(
|
|
326 |
options["use_resolution_binning"] = True
|
327 |
images = []
|
328 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
329 |
-
|
|
|
330 |
for i in range(0, num_images, BATCH_SIZE):
|
331 |
batch_options = options.copy()
|
332 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
@@ -381,7 +381,8 @@ def generate_90(
|
|
381 |
options["use_resolution_binning"] = True
|
382 |
images = []
|
383 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
384 |
-
|
|
|
385 |
for i in range(0, num_images, BATCH_SIZE):
|
386 |
batch_options = options.copy()
|
387 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
104 |
if not negative:
|
105 |
negative = ""
|
106 |
return p.replace("{prompt}", positive), n + negative
|
107 |
+
|
108 |
def load_and_prepare_model(model_id):
|
109 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
110 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
|
|
211 |
seed = random.randint(0, MAX_SEED)
|
212 |
return seed
|
213 |
|
214 |
+
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
215 |
+
filename= f'tst_A_{timestamp}.txt'
|
|
|
|
|
216 |
with open(filename, "w") as f:
|
217 |
+
f.write(f"Realvis 5.0 (Tester A) \n")
|
218 |
f.write(f"Date/time: {timestamp} \n")
|
219 |
f.write(f"Prompt: {prompt} \n")
|
220 |
f.write(f"Steps: {num_inference_steps} \n")
|
221 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
222 |
f.write(f"SPACE SETUP: \n")
|
223 |
f.write(f"Use Model Dtype: no \n")
|
224 |
+
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
225 |
+
f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n")
|
226 |
+
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
|
227 |
f.write(f"Model HiDiffusion OFF \n")
|
228 |
+
f.write(f"Model do_resize ON \n")
|
229 |
+
f.write(f"added torch to prereq and changed accellerate \n")
|
|
|
230 |
upload_to_ftp(filename)
|
231 |
|
232 |
@spaces.GPU(duration=30)
|
|
|
269 |
options["use_resolution_binning"] = True
|
270 |
images = []
|
271 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
272 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
273 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
274 |
for i in range(0, num_images, BATCH_SIZE):
|
275 |
batch_options = options.copy()
|
276 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
325 |
options["use_resolution_binning"] = True
|
326 |
images = []
|
327 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
328 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
329 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
330 |
for i in range(0, num_images, BATCH_SIZE):
|
331 |
batch_options = options.copy()
|
332 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
381 |
options["use_resolution_binning"] = True
|
382 |
images = []
|
383 |
pipe.scheduler.set_timesteps(num_inference_steps,device)
|
384 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
385 |
+
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
386 |
for i in range(0, num_images, BATCH_SIZE):
|
387 |
batch_options = options.copy()
|
388 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|