Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -135,7 +135,7 @@ def load_and_prepare_model(model_id):
|
|
135 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
136 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
137 |
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
138 |
-
pipe.vae =
|
139 |
#pipe.unet = unetX.to(torch.bfloat16)
|
140 |
pipe.scheduler = sched
|
141 |
pipe.vae.do_resize=False
|
@@ -240,7 +240,7 @@ def generate_30(
|
|
240 |
randomize_seed: bool = False,
|
241 |
use_resolution_binning: bool = True,
|
242 |
num_images: int = 1,
|
243 |
-
juggernaut: bool =
|
244 |
denoise: float = 0.3,
|
245 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
246 |
):
|
@@ -249,8 +249,8 @@ def generate_30(
|
|
249 |
gc.collect()
|
250 |
global models
|
251 |
pipe = models[model_choice]
|
252 |
-
if juggernaut ==
|
253 |
-
pipe.vae=
|
254 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
255 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
256 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
@@ -302,7 +302,7 @@ def generate_60(
|
|
302 |
randomize_seed: bool = False,
|
303 |
use_resolution_binning: bool = True,
|
304 |
num_images: int = 1,
|
305 |
-
juggernaut: bool =
|
306 |
denoise: float = 0.3,
|
307 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
308 |
):
|
@@ -311,8 +311,8 @@ def generate_60(
|
|
311 |
gc.collect()
|
312 |
global models
|
313 |
pipe = models[model_choice]
|
314 |
-
if juggernaut ==
|
315 |
-
pipe.vae=
|
316 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
317 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
318 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
@@ -364,7 +364,7 @@ def generate_90(
|
|
364 |
randomize_seed: bool = False,
|
365 |
use_resolution_binning: bool = True,
|
366 |
num_images: int = 1,
|
367 |
-
juggernaut: bool =
|
368 |
denoise: float = 0.3,
|
369 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
370 |
):
|
@@ -373,8 +373,8 @@ def generate_90(
|
|
373 |
gc.collect()
|
374 |
global models
|
375 |
pipe = models[model_choice]
|
376 |
-
if juggernaut ==
|
377 |
-
pipe.vae=
|
378 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
379 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
380 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
@@ -502,7 +502,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
502 |
value=0.3,
|
503 |
)
|
504 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
505 |
-
juggernaut = gr.Checkbox(label="Use Juggernaut VAE", value=
|
506 |
with gr.Row():
|
507 |
width = gr.Slider(
|
508 |
label="Width",
|
|
|
135 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
136 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
137 |
#pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
|
138 |
+
pipe.vae = vaeXL #.to(torch.bfloat16)
|
139 |
#pipe.unet = unetX.to(torch.bfloat16)
|
140 |
pipe.scheduler = sched
|
141 |
pipe.vae.do_resize=False
|
|
|
240 |
randomize_seed: bool = False,
|
241 |
use_resolution_binning: bool = True,
|
242 |
num_images: int = 1,
|
243 |
+
juggernaut: bool = False,
|
244 |
denoise: float = 0.3,
|
245 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
246 |
):
|
|
|
249 |
gc.collect()
|
250 |
global models
|
251 |
pipe = models[model_choice]
|
252 |
+
if juggernaut == True:
|
253 |
+
pipe.vae=vaeX
|
254 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
255 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
256 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
302 |
randomize_seed: bool = False,
|
303 |
use_resolution_binning: bool = True,
|
304 |
num_images: int = 1,
|
305 |
+
juggernaut: bool = False,
|
306 |
denoise: float = 0.3,
|
307 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
308 |
):
|
|
|
311 |
gc.collect()
|
312 |
global models
|
313 |
pipe = models[model_choice]
|
314 |
+
if juggernaut == True:
|
315 |
+
pipe.vae=vaeX
|
316 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
317 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
318 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
364 |
randomize_seed: bool = False,
|
365 |
use_resolution_binning: bool = True,
|
366 |
num_images: int = 1,
|
367 |
+
juggernaut: bool = False,
|
368 |
denoise: float = 0.3,
|
369 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
370 |
):
|
|
|
373 |
gc.collect()
|
374 |
global models
|
375 |
pipe = models[model_choice]
|
376 |
+
if juggernaut == True:
|
377 |
+
pipe.vae=vaeX
|
378 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
379 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
380 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
502 |
value=0.3,
|
503 |
)
|
504 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
505 |
+
juggernaut = gr.Checkbox(label="Use Juggernaut VAE", value=False)
|
506 |
with gr.Row():
|
507 |
width = gr.Slider(
|
508 |
label="Width",
|