ford442 commited on
Commit
c686b86
·
verified ·
1 Parent(s): 9d0f448

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -135,7 +135,7 @@ def load_and_prepare_model(model_id):
135
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
136
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
137
  #pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
138
- pipe.vae = vaeX.to(torch.bfloat16)
139
  #pipe.unet = unetX.to(torch.bfloat16)
140
  pipe.scheduler = sched
141
  pipe.vae.do_resize=False
@@ -240,7 +240,7 @@ def generate_30(
240
  randomize_seed: bool = False,
241
  use_resolution_binning: bool = True,
242
  num_images: int = 1,
243
- juggernaut: bool = True,
244
  denoise: float = 0.3,
245
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
246
  ):
@@ -249,8 +249,8 @@ def generate_30(
249
  gc.collect()
250
  global models
251
  pipe = models[model_choice]
252
- if juggernaut == False:
253
- pipe.vae=vaeXL
254
  seed = int(randomize_seed_fn(seed, randomize_seed))
255
  generator = torch.Generator(device='cuda').manual_seed(seed)
256
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
@@ -302,7 +302,7 @@ def generate_60(
302
  randomize_seed: bool = False,
303
  use_resolution_binning: bool = True,
304
  num_images: int = 1,
305
- juggernaut: bool = True,
306
  denoise: float = 0.3,
307
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
308
  ):
@@ -311,8 +311,8 @@ def generate_60(
311
  gc.collect()
312
  global models
313
  pipe = models[model_choice]
314
- if juggernaut == False:
315
- pipe.vae=vaeXL
316
  seed = int(randomize_seed_fn(seed, randomize_seed))
317
  generator = torch.Generator(device='cuda').manual_seed(seed)
318
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
@@ -364,7 +364,7 @@ def generate_90(
364
  randomize_seed: bool = False,
365
  use_resolution_binning: bool = True,
366
  num_images: int = 1,
367
- juggernaut: bool = True,
368
  denoise: float = 0.3,
369
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
370
  ):
@@ -373,8 +373,8 @@ def generate_90(
373
  gc.collect()
374
  global models
375
  pipe = models[model_choice]
376
- if juggernaut == False:
377
- pipe.vae=vaeXL
378
  seed = int(randomize_seed_fn(seed, randomize_seed))
379
  generator = torch.Generator(device='cuda').manual_seed(seed)
380
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
@@ -502,7 +502,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
502
  value=0.3,
503
  )
504
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
505
- juggernaut = gr.Checkbox(label="Use Juggernaut VAE", value=True)
506
  with gr.Row():
507
  width = gr.Slider(
508
  label="Width",
 
135
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
136
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
137
  #pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
138
+ pipe.vae = vaeXL #.to(torch.bfloat16)
139
  #pipe.unet = unetX.to(torch.bfloat16)
140
  pipe.scheduler = sched
141
  pipe.vae.do_resize=False
 
240
  randomize_seed: bool = False,
241
  use_resolution_binning: bool = True,
242
  num_images: int = 1,
243
+ juggernaut: bool = False,
244
  denoise: float = 0.3,
245
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
246
  ):
 
249
  gc.collect()
250
  global models
251
  pipe = models[model_choice]
252
+ if juggernaut == True:
253
+ pipe.vae=vaeX
254
  seed = int(randomize_seed_fn(seed, randomize_seed))
255
  generator = torch.Generator(device='cuda').manual_seed(seed)
256
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
 
302
  randomize_seed: bool = False,
303
  use_resolution_binning: bool = True,
304
  num_images: int = 1,
305
+ juggernaut: bool = False,
306
  denoise: float = 0.3,
307
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
308
  ):
 
311
  gc.collect()
312
  global models
313
  pipe = models[model_choice]
314
+ if juggernaut == True:
315
+ pipe.vae=vaeX
316
  seed = int(randomize_seed_fn(seed, randomize_seed))
317
  generator = torch.Generator(device='cuda').manual_seed(seed)
318
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
 
364
  randomize_seed: bool = False,
365
  use_resolution_binning: bool = True,
366
  num_images: int = 1,
367
+ juggernaut: bool = False,
368
  denoise: float = 0.3,
369
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
370
  ):
 
373
  gc.collect()
374
  global models
375
  pipe = models[model_choice]
376
+ if juggernaut == True:
377
+ pipe.vae=vaeX
378
  seed = int(randomize_seed_fn(seed, randomize_seed))
379
  generator = torch.Generator(device='cuda').manual_seed(seed)
380
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
 
502
  value=0.3,
503
  )
504
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
505
+ juggernaut = gr.Checkbox(label="Use Juggernaut VAE", value=False)
506
  with gr.Row():
507
  width = gr.Slider(
508
  label="Width",