ford442 commited on
Commit
8e5ee42
·
verified ·
1 Parent(s): e910612

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -114,7 +114,7 @@ def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
114
  # pipe.vae = vae_a
115
  # pipe.unet = unet_a
116
  torch.backends.cudnn.deterministic = False
117
- pipe.unet.set_default_attn_processor()
118
  print("-- swapping scheduler --")
119
  # pipeline.scheduler = heun_scheduler
120
  #pipe.scheduler.set_timesteps(num_inference_steps*.70)
@@ -248,7 +248,7 @@ def upload_to_ftp(filename):
248
  def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
249
  filename= f'rv_C_{timestamp}.txt'
250
  with open(filename, "w") as f:
251
- f.write(f"Realvis 5.0 (Tester C) \n")
252
  f.write(f"Date/time: {timestamp} \n")
253
  f.write(f"Prompt: {prompt} \n")
254
  f.write(f"Steps: {num_inference_steps} \n")
@@ -300,14 +300,14 @@ def generate_30(
300
  #uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
301
  batch_options = options.copy()
302
  rv_image = pipe(**batch_options).images[0]
303
- sd_image_path = f"rv_C_{timestamp}.png"
304
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
305
  pyx.upload_to_ftp(sd_image_path)
306
  torch.set_float32_matmul_precision("medium")
307
  with torch.no_grad():
308
  upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
309
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
310
- downscale_path = f"rv50_upscale_{timestamp}.png"
311
  downscale1.save(downscale_path,optimize=False,compress_level=0)
312
  pyx.upload_to_ftp(downscale_path)
313
  unique_name = str(uuid.uuid4()) + ".png"
@@ -348,7 +348,7 @@ def generate_60(
348
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
349
  batch_options = options.copy()
350
  rv_image = pipe(**batch_options).images[0]
351
- sd_image_path = f"rv_C_{timestamp}.png"
352
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
353
  upload_to_ftp(sd_image_path)
354
  unique_name = str(uuid.uuid4()) + ".png"
@@ -389,7 +389,7 @@ def generate_90(
389
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
390
  batch_options = options.copy()
391
  rv_image = pipe(**batch_options).images[0]
392
- sd_image_path = f"rv_C_{timestamp}.png"
393
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
394
  upload_to_ftp(sd_image_path)
395
  unique_name = str(uuid.uuid4()) + ".png"
 
114
  # pipe.vae = vae_a
115
  # pipe.unet = unet_a
116
  torch.backends.cudnn.deterministic = False
117
+ #pipe.unet.set_default_attn_processor()
118
  print("-- swapping scheduler --")
119
  # pipeline.scheduler = heun_scheduler
120
  #pipe.scheduler.set_timesteps(num_inference_steps*.70)
 
248
  def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
249
  filename= f'rv_C_{timestamp}.txt'
250
  with open(filename, "w") as f:
251
+ f.write(f"Realvis 5.0 (Tester D) \n")
252
  f.write(f"Date/time: {timestamp} \n")
253
  f.write(f"Prompt: {prompt} \n")
254
  f.write(f"Steps: {num_inference_steps} \n")
 
300
  #uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
301
  batch_options = options.copy()
302
  rv_image = pipe(**batch_options).images[0]
303
+ sd_image_path = f"rv_D_{timestamp}.png"
304
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
305
  pyx.upload_to_ftp(sd_image_path)
306
  torch.set_float32_matmul_precision("medium")
307
  with torch.no_grad():
308
  upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
309
  downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
310
+ downscale_path = f"rv_D_upscale_{timestamp}.png"
311
  downscale1.save(downscale_path,optimize=False,compress_level=0)
312
  pyx.upload_to_ftp(downscale_path)
313
  unique_name = str(uuid.uuid4()) + ".png"
 
348
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
349
  batch_options = options.copy()
350
  rv_image = pipe(**batch_options).images[0]
351
+ sd_image_path = f"rv_D_{timestamp}.png"
352
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
353
  upload_to_ftp(sd_image_path)
354
  unique_name = str(uuid.uuid4()) + ".png"
 
389
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
390
  batch_options = options.copy()
391
  rv_image = pipe(**batch_options).images[0]
392
+ sd_image_path = f"rv_D_{timestamp}.png"
393
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
394
  upload_to_ftp(sd_image_path)
395
  unique_name = str(uuid.uuid4()) + ".png"