Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -158,19 +158,7 @@ def upload_to_ftp(filename):
|
|
158 |
except Exception as e:
|
159 |
print(f"FTP upload error: {e}")
|
160 |
|
161 |
-
|
162 |
-
if style_name in styles:
|
163 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
164 |
-
else:
|
165 |
-
p, n = styles[DEFAULT_STYLE_NAME]
|
166 |
-
if not negative:
|
167 |
-
negative = ""
|
168 |
-
return p.replace("{prompt}", positive), n + negative
|
169 |
-
|
170 |
-
def save_image(img):
|
171 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
172 |
-
img.save(unique_name,optimize=False,compress_level=0)
|
173 |
-
return unique_name
|
174 |
|
175 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
176 |
filename= f'rv_C_{timestamp}.txt'
|
@@ -187,6 +175,56 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
187 |
upload_to_ftp(filename)
|
188 |
|
189 |
code = r'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
191 |
filename= f'rv_C_{timestamp}.txt'
|
192 |
with open(filename, "w") as f:
|
@@ -200,6 +238,7 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
200 |
f.write(f"Model VAE: sdxl-vae-bf16\n")
|
201 |
f.write(f"To cuda and bfloat \n")
|
202 |
return filename
|
|
|
203 |
'''
|
204 |
|
205 |
pyx = cyper.inline(code)
|
@@ -229,20 +268,21 @@ def generate_30(
|
|
229 |
"num_inference_steps": num_inference_steps,
|
230 |
"generator": generator,
|
231 |
"output_type": "pil",
|
232 |
-
"callback_on_step_end": scheduler_swap_callback
|
233 |
}
|
234 |
if use_resolution_binning:
|
235 |
options["use_resolution_binning"] = True
|
236 |
images = []
|
237 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
238 |
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
239 |
-
upload_to_ftp(filename)
|
|
|
240 |
#uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
241 |
batch_options = options.copy()
|
242 |
rv_image = pipe(**batch_options).images[0]
|
243 |
sd_image_path = f"rv_C_{timestamp}.png"
|
244 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
245 |
-
upload_to_ftp(sd_image_path)
|
246 |
unique_name = str(uuid.uuid4()) + ".png"
|
247 |
os.symlink(sd_image_path, unique_name)
|
248 |
return [unique_name]
|
|
|
158 |
except Exception as e:
|
159 |
print(f"FTP upload error: {e}")
|
160 |
|
161 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
164 |
filename= f'rv_C_{timestamp}.txt'
|
|
|
175 |
upload_to_ftp(filename)
|
176 |
|
177 |
code = r'''
|
178 |
+
|
179 |
+
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
180 |
+
# adjust the batch_size of prompt_embeds according to guidance_scale
|
181 |
+
if step_index == int(pipeline.num_timesteps * 0.1):
|
182 |
+
print("-- swapping scheduler --")
|
183 |
+
# pipeline.scheduler = euler_scheduler
|
184 |
+
torch.set_float32_matmul_precision("high")
|
185 |
+
# pipe.vae = vae_b
|
186 |
+
torch.backends.cudnn.allow_tf32 = True
|
187 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
188 |
+
torch.backends.cudnn.deterministic = True
|
189 |
+
torch.backends.cuda.preferred_blas_library="cublaslt"
|
190 |
+
#if step_index == int(pipeline.num_timesteps * 0.5):
|
191 |
+
# torch.set_float32_matmul_precision("medium")
|
192 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
|
193 |
+
#pipe.unet.to(torch.float64)
|
194 |
+
# pipe.guidance_scale=1.0
|
195 |
+
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
196 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
197 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
|
198 |
+
if step_index == int(pipeline.num_timesteps * 0.9):
|
199 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
200 |
+
torch.backends.cudnn.allow_tf32 = False
|
201 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
202 |
+
torch.set_float32_matmul_precision("highest")
|
203 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
|
204 |
+
#pipe.unet.to(torch.float64)
|
205 |
+
# pipe.vae = vae_a
|
206 |
+
# pipe.unet = unet_a
|
207 |
+
torch.backends.cudnn.deterministic = False
|
208 |
+
print("-- swapping scheduler --")
|
209 |
+
# pipeline.scheduler = heun_scheduler
|
210 |
+
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
211 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
|
212 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
|
213 |
+
return {"latents": callback_kwargs["latents"]}
|
214 |
+
|
215 |
+
def upload_to_ftp(filename):
|
216 |
+
try:
|
217 |
+
transport = paramiko.Transport((FTP_HOST, 22))
|
218 |
+
destination_path=FTP_DIR+filename
|
219 |
+
transport.connect(username = FTP_USER, password = FTP_PASS)
|
220 |
+
sftp = paramiko.SFTPClient.from_transport(transport)
|
221 |
+
sftp.put(filename, destination_path)
|
222 |
+
sftp.close()
|
223 |
+
transport.close()
|
224 |
+
print(f"Uploaded {filename} to FTP server")
|
225 |
+
except Exception as e:
|
226 |
+
print(f"FTP upload error: {e}")
|
227 |
+
|
228 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
229 |
filename= f'rv_C_{timestamp}.txt'
|
230 |
with open(filename, "w") as f:
|
|
|
238 |
f.write(f"Model VAE: sdxl-vae-bf16\n")
|
239 |
f.write(f"To cuda and bfloat \n")
|
240 |
return filename
|
241 |
+
|
242 |
'''
|
243 |
|
244 |
pyx = cyper.inline(code)
|
|
|
268 |
"num_inference_steps": num_inference_steps,
|
269 |
"generator": generator,
|
270 |
"output_type": "pil",
|
271 |
+
"callback_on_step_end": pyx.scheduler_swap_callback
|
272 |
}
|
273 |
if use_resolution_binning:
|
274 |
options["use_resolution_binning"] = True
|
275 |
images = []
|
276 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
277 |
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
278 |
+
#upload_to_ftp(filename)
|
279 |
+
pyx.upload_to_ftp(filename)
|
280 |
#uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
281 |
batch_options = options.copy()
|
282 |
rv_image = pipe(**batch_options).images[0]
|
283 |
sd_image_path = f"rv_C_{timestamp}.png"
|
284 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
285 |
+
pyx.upload_to_ftp(sd_image_path)
|
286 |
unique_name = str(uuid.uuid4()) + ".png"
|
287 |
os.symlink(sd_image_path, unique_name)
|
288 |
return [unique_name]
|