Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -158,19 +158,7 @@ def upload_to_ftp(filename):
|
|
| 158 |
except Exception as e:
|
| 159 |
print(f"FTP upload error: {e}")
|
| 160 |
|
| 161 |
-
|
| 162 |
-
if style_name in styles:
|
| 163 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 164 |
-
else:
|
| 165 |
-
p, n = styles[DEFAULT_STYLE_NAME]
|
| 166 |
-
if not negative:
|
| 167 |
-
negative = ""
|
| 168 |
-
return p.replace("{prompt}", positive), n + negative
|
| 169 |
-
|
| 170 |
-
def save_image(img):
|
| 171 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
| 172 |
-
img.save(unique_name,optimize=False,compress_level=0)
|
| 173 |
-
return unique_name
|
| 174 |
|
| 175 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
| 176 |
filename= f'rv_C_{timestamp}.txt'
|
|
@@ -187,6 +175,56 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
| 187 |
upload_to_ftp(filename)
|
| 188 |
|
| 189 |
code = r'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
| 191 |
filename= f'rv_C_{timestamp}.txt'
|
| 192 |
with open(filename, "w") as f:
|
|
@@ -200,6 +238,7 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
| 200 |
f.write(f"Model VAE: sdxl-vae-bf16\n")
|
| 201 |
f.write(f"To cuda and bfloat \n")
|
| 202 |
return filename
|
|
|
|
| 203 |
'''
|
| 204 |
|
| 205 |
pyx = cyper.inline(code)
|
|
@@ -229,20 +268,21 @@ def generate_30(
|
|
| 229 |
"num_inference_steps": num_inference_steps,
|
| 230 |
"generator": generator,
|
| 231 |
"output_type": "pil",
|
| 232 |
-
"callback_on_step_end": scheduler_swap_callback
|
| 233 |
}
|
| 234 |
if use_resolution_binning:
|
| 235 |
options["use_resolution_binning"] = True
|
| 236 |
images = []
|
| 237 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 238 |
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
| 239 |
-
upload_to_ftp(filename)
|
|
|
|
| 240 |
#uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
| 241 |
batch_options = options.copy()
|
| 242 |
rv_image = pipe(**batch_options).images[0]
|
| 243 |
sd_image_path = f"rv_C_{timestamp}.png"
|
| 244 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
| 245 |
-
upload_to_ftp(sd_image_path)
|
| 246 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 247 |
os.symlink(sd_image_path, unique_name)
|
| 248 |
return [unique_name]
|
|
|
|
| 158 |
except Exception as e:
|
| 159 |
print(f"FTP upload error: {e}")
|
| 160 |
|
| 161 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
| 164 |
filename= f'rv_C_{timestamp}.txt'
|
|
|
|
| 175 |
upload_to_ftp(filename)
|
| 176 |
|
| 177 |
code = r'''
|
| 178 |
+
|
| 179 |
+
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
| 180 |
+
# adjust the batch_size of prompt_embeds according to guidance_scale
|
| 181 |
+
if step_index == int(pipeline.num_timesteps * 0.1):
|
| 182 |
+
print("-- swapping scheduler --")
|
| 183 |
+
# pipeline.scheduler = euler_scheduler
|
| 184 |
+
torch.set_float32_matmul_precision("high")
|
| 185 |
+
# pipe.vae = vae_b
|
| 186 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 187 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 188 |
+
torch.backends.cudnn.deterministic = True
|
| 189 |
+
torch.backends.cuda.preferred_blas_library="cublaslt"
|
| 190 |
+
#if step_index == int(pipeline.num_timesteps * 0.5):
|
| 191 |
+
# torch.set_float32_matmul_precision("medium")
|
| 192 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
|
| 193 |
+
#pipe.unet.to(torch.float64)
|
| 194 |
+
# pipe.guidance_scale=1.0
|
| 195 |
+
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
| 196 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
| 197 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
|
| 198 |
+
if step_index == int(pipeline.num_timesteps * 0.9):
|
| 199 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
| 200 |
+
torch.backends.cudnn.allow_tf32 = False
|
| 201 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
| 202 |
+
torch.set_float32_matmul_precision("highest")
|
| 203 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
|
| 204 |
+
#pipe.unet.to(torch.float64)
|
| 205 |
+
# pipe.vae = vae_a
|
| 206 |
+
# pipe.unet = unet_a
|
| 207 |
+
torch.backends.cudnn.deterministic = False
|
| 208 |
+
print("-- swapping scheduler --")
|
| 209 |
+
# pipeline.scheduler = heun_scheduler
|
| 210 |
+
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
| 211 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
|
| 212 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
|
| 213 |
+
return {"latents": callback_kwargs["latents"]}
|
| 214 |
+
|
| 215 |
+
def upload_to_ftp(filename):
|
| 216 |
+
try:
|
| 217 |
+
transport = paramiko.Transport((FTP_HOST, 22))
|
| 218 |
+
destination_path=FTP_DIR+filename
|
| 219 |
+
transport.connect(username = FTP_USER, password = FTP_PASS)
|
| 220 |
+
sftp = paramiko.SFTPClient.from_transport(transport)
|
| 221 |
+
sftp.put(filename, destination_path)
|
| 222 |
+
sftp.close()
|
| 223 |
+
transport.close()
|
| 224 |
+
print(f"Uploaded {filename} to FTP server")
|
| 225 |
+
except Exception as e:
|
| 226 |
+
print(f"FTP upload error: {e}")
|
| 227 |
+
|
| 228 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
| 229 |
filename= f'rv_C_{timestamp}.txt'
|
| 230 |
with open(filename, "w") as f:
|
|
|
|
| 238 |
f.write(f"Model VAE: sdxl-vae-bf16\n")
|
| 239 |
f.write(f"To cuda and bfloat \n")
|
| 240 |
return filename
|
| 241 |
+
|
| 242 |
'''
|
| 243 |
|
| 244 |
pyx = cyper.inline(code)
|
|
|
|
| 268 |
"num_inference_steps": num_inference_steps,
|
| 269 |
"generator": generator,
|
| 270 |
"output_type": "pil",
|
| 271 |
+
"callback_on_step_end": pyx.scheduler_swap_callback
|
| 272 |
}
|
| 273 |
if use_resolution_binning:
|
| 274 |
options["use_resolution_binning"] = True
|
| 275 |
images = []
|
| 276 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 277 |
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
| 278 |
+
#upload_to_ftp(filename)
|
| 279 |
+
pyx.upload_to_ftp(filename)
|
| 280 |
#uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
| 281 |
batch_options = options.copy()
|
| 282 |
rv_image = pipe(**batch_options).images[0]
|
| 283 |
sd_image_path = f"rv_C_{timestamp}.png"
|
| 284 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
| 285 |
+
pyx.upload_to_ftp(sd_image_path)
|
| 286 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 287 |
os.symlink(sd_image_path, unique_name)
|
| 288 |
return [unique_name]
|