Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -124,7 +124,7 @@ def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
|
124 |
|
125 |
def load_and_prepare_model():
|
126 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
|
127 |
-
|
128 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
129 |
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
130 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
@@ -134,7 +134,7 @@ def load_and_prepare_model():
|
|
134 |
# low_cpu_mem_usage = False,
|
135 |
token=HF_TOKEN,
|
136 |
)
|
137 |
-
|
138 |
pipe.scheduler = sched
|
139 |
#pipe.vae.do_resize=False
|
140 |
#pipe.vae.vae_scale_factor=8
|
@@ -288,7 +288,7 @@ def generate_30(
|
|
288 |
"num_inference_steps": num_inference_steps,
|
289 |
"generator": generator,
|
290 |
"output_type": "pil",
|
291 |
-
|
292 |
}
|
293 |
if use_resolution_binning:
|
294 |
options["use_resolution_binning"] = True
|
@@ -339,7 +339,7 @@ def generate_60(
|
|
339 |
"num_inference_steps": num_inference_steps,
|
340 |
"generator": generator,
|
341 |
"output_type": "pil",
|
342 |
-
|
343 |
}
|
344 |
if use_resolution_binning:
|
345 |
options["use_resolution_binning"] = True
|
@@ -380,7 +380,7 @@ def generate_90(
|
|
380 |
"num_inference_steps": num_inference_steps,
|
381 |
"generator": generator,
|
382 |
"output_type": "pil",
|
383 |
-
|
384 |
}
|
385 |
if use_resolution_binning:
|
386 |
options["use_resolution_binning"] = True
|
|
|
124 |
|
125 |
def load_and_prepare_model():
|
126 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
|
127 |
+
vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
128 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
129 |
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
130 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
|
134 |
# low_cpu_mem_usage = False,
|
135 |
token=HF_TOKEN,
|
136 |
)
|
137 |
+
pipe.vae = vaeRV #.to(torch.bfloat16)
|
138 |
pipe.scheduler = sched
|
139 |
#pipe.vae.do_resize=False
|
140 |
#pipe.vae.vae_scale_factor=8
|
|
|
288 |
"num_inference_steps": num_inference_steps,
|
289 |
"generator": generator,
|
290 |
"output_type": "pil",
|
291 |
+
# "callback_on_step_end": pyx.scheduler_swap_callback
|
292 |
}
|
293 |
if use_resolution_binning:
|
294 |
options["use_resolution_binning"] = True
|
|
|
339 |
"num_inference_steps": num_inference_steps,
|
340 |
"generator": generator,
|
341 |
"output_type": "pil",
|
342 |
+
# "callback_on_step_end": scheduler_swap_callback
|
343 |
}
|
344 |
if use_resolution_binning:
|
345 |
options["use_resolution_binning"] = True
|
|
|
380 |
"num_inference_steps": num_inference_steps,
|
381 |
"generator": generator,
|
382 |
"output_type": "pil",
|
383 |
+
# "callback_on_step_end": scheduler_swap_callback
|
384 |
}
|
385 |
if use_resolution_binning:
|
386 |
options["use_resolution_binning"] = True
|