ford442 commited on
Commit
5648605
·
verified ·
1 Parent(s): 6902bc5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -124,7 +124,7 @@ def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
124
 
125
  def load_and_prepare_model():
126
  #vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
127
- #vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
128
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
129
  sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
130
  pipe = StableDiffusionXLPipeline.from_pretrained(
@@ -134,7 +134,7 @@ def load_and_prepare_model():
134
  # low_cpu_mem_usage = False,
135
  token=HF_TOKEN,
136
  )
137
- #pipe.vae = vaeRV #.to(torch.bfloat16)
138
  pipe.scheduler = sched
139
  #pipe.vae.do_resize=False
140
  #pipe.vae.vae_scale_factor=8
@@ -288,7 +288,7 @@ def generate_30(
288
  "num_inference_steps": num_inference_steps,
289
  "generator": generator,
290
  "output_type": "pil",
291
- "callback_on_step_end": pyx.scheduler_swap_callback
292
  }
293
  if use_resolution_binning:
294
  options["use_resolution_binning"] = True
@@ -339,7 +339,7 @@ def generate_60(
339
  "num_inference_steps": num_inference_steps,
340
  "generator": generator,
341
  "output_type": "pil",
342
- "callback_on_step_end": scheduler_swap_callback
343
  }
344
  if use_resolution_binning:
345
  options["use_resolution_binning"] = True
@@ -380,7 +380,7 @@ def generate_90(
380
  "num_inference_steps": num_inference_steps,
381
  "generator": generator,
382
  "output_type": "pil",
383
- "callback_on_step_end": scheduler_swap_callback
384
  }
385
  if use_resolution_binning:
386
  options["use_resolution_binning"] = True
 
124
 
125
  def load_and_prepare_model():
126
  #vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
127
+ vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
128
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
129
  sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
130
  pipe = StableDiffusionXLPipeline.from_pretrained(
 
134
  # low_cpu_mem_usage = False,
135
  token=HF_TOKEN,
136
  )
137
+ pipe.vae = vaeRV #.to(torch.bfloat16)
138
  pipe.scheduler = sched
139
  #pipe.vae.do_resize=False
140
  #pipe.vae.vae_scale_factor=8
 
288
  "num_inference_steps": num_inference_steps,
289
  "generator": generator,
290
  "output_type": "pil",
291
+ # "callback_on_step_end": pyx.scheduler_swap_callback
292
  }
293
  if use_resolution_binning:
294
  options["use_resolution_binning"] = True
 
339
  "num_inference_steps": num_inference_steps,
340
  "generator": generator,
341
  "output_type": "pil",
342
+ # "callback_on_step_end": scheduler_swap_callback
343
  }
344
  if use_resolution_binning:
345
  options["use_resolution_binning"] = True
 
380
  "num_inference_steps": num_inference_steps,
381
  "generator": generator,
382
  "output_type": "pil",
383
+ # "callback_on_step_end": scheduler_swap_callback
384
  }
385
  if use_resolution_binning:
386
  options["use_resolution_binning"] = True