ford442 commited on
Commit
36823d3
·
verified ·
1 Parent(s): c192ce5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -41
app.py CHANGED
@@ -239,7 +239,6 @@ def generate_30(
239
  num_inference_steps: int = 125,
240
  randomize_seed: bool = False,
241
  use_resolution_binning: bool = True,
242
- num_images: int = 1,
243
  juggernaut: bool = False,
244
  denoise: float = 0.3,
245
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
@@ -255,7 +254,7 @@ def generate_30(
255
  generator = torch.Generator(device='cuda').manual_seed(seed)
256
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
257
  options = {
258
- "prompt": [prompt] * num_images,
259
  "negative_prompt": [negative_prompt],
260
  "negative_prompt_2": [neg_prompt_2],
261
  "strength": denoise,
@@ -273,16 +272,12 @@ def generate_30(
273
  pipe.scheduler.set_timesteps(num_inference_steps,device)
274
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
275
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
276
- for i in range(0, num_images, BATCH_SIZE):
277
- batch_options = options.copy()
278
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
279
- if "negative_prompt" in batch_options:
280
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
281
- images.extend(pipe(**batch_options).images)
282
  sd_image_path = f"rv50_B_{seed}.png"
283
- images[0].save(sd_image_path,optimize=False,compress_level=0)
284
  upload_to_ftp(sd_image_path)
285
- image_paths = [save_image(img) for img in images]
286
  torch.cuda.empty_cache()
287
  gc.collect()
288
  return image_paths, seed
@@ -301,7 +296,6 @@ def generate_60(
301
  num_inference_steps: int = 250,
302
  randomize_seed: bool = False,
303
  use_resolution_binning: bool = True,
304
- num_images: int = 1,
305
  juggernaut: bool = False,
306
  denoise: float = 0.3,
307
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
@@ -317,7 +311,7 @@ def generate_60(
317
  generator = torch.Generator(device='cuda').manual_seed(seed)
318
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
319
  options = {
320
- "prompt": [prompt] * num_images,
321
  "negative_prompt": [negative_prompt],
322
  "negative_prompt_2": [neg_prompt_2],
323
  "strength": denoise,
@@ -335,20 +329,16 @@ def generate_60(
335
  pipe.scheduler.set_timesteps(num_inference_steps,device)
336
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
337
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
338
- for i in range(0, num_images, BATCH_SIZE):
339
- batch_options = options.copy()
340
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
341
- if "negative_prompt" in batch_options:
342
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
343
- images.extend(pipe(**batch_options).images)
344
  sd_image_path = f"rv50_B_{seed}.png"
345
- images[0].save(sd_image_path,optimize=False,compress_level=0)
346
  upload_to_ftp(sd_image_path)
347
- image_paths = [save_image(img) for img in images]
348
  torch.cuda.empty_cache()
349
  gc.collect()
350
  return image_paths, seed
351
-
352
  @spaces.GPU(duration=90)
353
  def generate_90(
354
  model_choice: str,
@@ -363,7 +353,6 @@ def generate_90(
363
  num_inference_steps: int = 250,
364
  randomize_seed: bool = False,
365
  use_resolution_binning: bool = True,
366
- num_images: int = 1,
367
  juggernaut: bool = False,
368
  denoise: float = 0.3,
369
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
@@ -379,7 +368,7 @@ def generate_90(
379
  generator = torch.Generator(device='cuda').manual_seed(seed)
380
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
381
  options = {
382
- "prompt": [prompt] * num_images,
383
  "negative_prompt": [negative_prompt],
384
  "negative_prompt_2": [neg_prompt_2],
385
  "strength": denoise,
@@ -397,16 +386,12 @@ def generate_90(
397
  pipe.scheduler.set_timesteps(num_inference_steps,device)
398
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
399
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
400
- for i in range(0, num_images, BATCH_SIZE):
401
- batch_options = options.copy()
402
- batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
403
- if "negative_prompt" in batch_options:
404
- batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
405
- images.extend(pipe(**batch_options).images)
406
  sd_image_path = f"rv50_B_{seed}.png"
407
- images[0].save(sd_image_path,optimize=False,compress_level=0)
408
  upload_to_ftp(sd_image_path)
409
- image_paths = [save_image(img) for img in images]
410
  torch.cuda.empty_cache()
411
  gc.collect()
412
  return image_paths, seed
@@ -469,13 +454,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
469
  value=DEFAULT_STYLE_NAME,
470
  label="Quality Style",
471
  )
472
- num_images = gr.Slider(
473
- label="Number of Images",
474
- minimum=1,
475
- maximum=5,
476
- step=1,
477
- value=1,
478
- )
479
  with gr.Row():
480
  with gr.Column(scale=1):
481
  use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
@@ -565,7 +543,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
565
  guidance_scale,
566
  num_inference_steps,
567
  randomize_seed,
568
- num_images,
569
  juggernaut,
570
  denoise
571
  ],
@@ -590,7 +567,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
590
  guidance_scale,
591
  num_inference_steps,
592
  randomize_seed,
593
- num_images,
594
  juggernaut,
595
  denoise
596
  ],
@@ -615,7 +591,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
615
  guidance_scale,
616
  num_inference_steps,
617
  randomize_seed,
618
- num_images,
619
  juggernaut,
620
  denoise
621
  ],
 
239
  num_inference_steps: int = 125,
240
  randomize_seed: bool = False,
241
  use_resolution_binning: bool = True,
 
242
  juggernaut: bool = False,
243
  denoise: float = 0.3,
244
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
 
254
  generator = torch.Generator(device='cuda').manual_seed(seed)
255
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
256
  options = {
257
+ "prompt": [prompt],
258
  "negative_prompt": [negative_prompt],
259
  "negative_prompt_2": [neg_prompt_2],
260
  "strength": denoise,
 
272
  pipe.scheduler.set_timesteps(num_inference_steps,device)
273
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
274
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
275
+ batch_options = options.copy()
276
+ rv_image = images.extend(pipe(**batch_options).images[0])
 
 
 
 
277
  sd_image_path = f"rv50_B_{seed}.png"
278
+ rv_image.save(sd_image_path,optimize=False,compress_level=0)
279
  upload_to_ftp(sd_image_path)
280
+ image_paths = save_image(rv_image)
281
  torch.cuda.empty_cache()
282
  gc.collect()
283
  return image_paths, seed
 
296
  num_inference_steps: int = 250,
297
  randomize_seed: bool = False,
298
  use_resolution_binning: bool = True,
 
299
  juggernaut: bool = False,
300
  denoise: float = 0.3,
301
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
 
311
  generator = torch.Generator(device='cuda').manual_seed(seed)
312
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
313
  options = {
314
+ "prompt": [prompt],
315
  "negative_prompt": [negative_prompt],
316
  "negative_prompt_2": [neg_prompt_2],
317
  "strength": denoise,
 
329
  pipe.scheduler.set_timesteps(num_inference_steps,device)
330
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
331
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
332
+ batch_options = options.copy()
333
+ rv_image = images.extend(pipe(**batch_options).images[0])
 
 
 
 
334
  sd_image_path = f"rv50_B_{seed}.png"
335
+ rv_image.save(sd_image_path,optimize=False,compress_level=0)
336
  upload_to_ftp(sd_image_path)
337
+ image_paths = save_image(rv_image)
338
  torch.cuda.empty_cache()
339
  gc.collect()
340
  return image_paths, seed
341
+
342
  @spaces.GPU(duration=90)
343
  def generate_90(
344
  model_choice: str,
 
353
  num_inference_steps: int = 250,
354
  randomize_seed: bool = False,
355
  use_resolution_binning: bool = True,
 
356
  juggernaut: bool = False,
357
  denoise: float = 0.3,
358
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
 
368
  generator = torch.Generator(device='cuda').manual_seed(seed)
369
  #prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
370
  options = {
371
+ "prompt": [prompt],
372
  "negative_prompt": [negative_prompt],
373
  "negative_prompt_2": [neg_prompt_2],
374
  "strength": denoise,
 
386
  pipe.scheduler.set_timesteps(num_inference_steps,device)
387
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
388
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp,denoise)
389
+ batch_options = options.copy()
390
+ rv_image = images.extend(pipe(**batch_options).images[0])
 
 
 
 
391
  sd_image_path = f"rv50_B_{seed}.png"
392
+ rv_image.save(sd_image_path,optimize=False,compress_level=0)
393
  upload_to_ftp(sd_image_path)
394
+ image_paths = save_image(rv_image)
395
  torch.cuda.empty_cache()
396
  gc.collect()
397
  return image_paths, seed
 
454
  value=DEFAULT_STYLE_NAME,
455
  label="Quality Style",
456
  )
 
 
 
 
 
 
 
457
  with gr.Row():
458
  with gr.Column(scale=1):
459
  use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
 
543
  guidance_scale,
544
  num_inference_steps,
545
  randomize_seed,
 
546
  juggernaut,
547
  denoise
548
  ],
 
567
  guidance_scale,
568
  num_inference_steps,
569
  randomize_seed,
 
570
  juggernaut,
571
  denoise
572
  ],
 
591
  guidance_scale,
592
  num_inference_steps,
593
  randomize_seed,
 
594
  juggernaut,
595
  denoise
596
  ],