Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -274,14 +274,10 @@ import torch
|
|
274 |
import paramiko
|
275 |
import os
|
276 |
|
277 |
-
|
278 |
FTP_USER = os.getenv("FTP_USER")
|
279 |
-
|
280 |
FTP_DIR = os.getenv("FTP_DIR")
|
281 |
-
FTP_HOST = "1ink.us"
|
282 |
-
#FTP_USER = "ford442"
|
283 |
-
FTP_PASS = "GoogleBez12!"
|
284 |
-
#FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
285 |
|
286 |
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
287 |
# adjust the batch_size of prompt_embeds according to guidance_scale
|
@@ -342,7 +338,6 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
342 |
f.write(f"Steps: {num_inference_steps} \n")
|
343 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
344 |
f.write(f"SPACE SETUP: \n")
|
345 |
-
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
346 |
f.write(f"Model VAE: sdxl-vae-bf16\n")
|
347 |
f.write(f"To cuda and bfloat \n")
|
348 |
return filename
|
@@ -351,7 +346,7 @@ def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
|
351 |
|
352 |
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
353 |
|
354 |
-
@spaces.GPU(duration=
|
355 |
def generate_30(
|
356 |
prompt: str,
|
357 |
negative_prompt: str = "",
|
@@ -362,7 +357,7 @@ def generate_30(
|
|
362 |
guidance_scale: float = 4,
|
363 |
num_inference_steps: int = 125,
|
364 |
use_resolution_binning: bool = True,
|
365 |
-
progress=gr.Progress(track_tqdm=True)
|
366 |
):
|
367 |
seed = random.randint(0, MAX_SEED)
|
368 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
@@ -383,9 +378,7 @@ def generate_30(
|
|
383 |
images = []
|
384 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
385 |
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
386 |
-
#upload_to_ftp(filename)
|
387 |
pyx.upload_to_ftp(filename)
|
388 |
-
#uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
389 |
batch_options = options.copy()
|
390 |
with torch.inference_mode():
|
391 |
rv_image = pipe(**batch_options).images[0]
|
@@ -403,7 +396,7 @@ def generate_30(
|
|
403 |
os.symlink(sd_image_path, unique_name)
|
404 |
return [unique_name]
|
405 |
|
406 |
-
@spaces.GPU(duration=
|
407 |
def generate_60(
|
408 |
prompt: str,
|
409 |
negative_prompt: str = "",
|
@@ -414,7 +407,7 @@ def generate_60(
|
|
414 |
guidance_scale: float = 4,
|
415 |
num_inference_steps: int = 125,
|
416 |
use_resolution_binning: bool = True,
|
417 |
-
progress=gr.Progress(track_tqdm=True)
|
418 |
):
|
419 |
seed = random.randint(0, MAX_SEED)
|
420 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
@@ -445,7 +438,7 @@ def generate_60(
|
|
445 |
os.symlink(sd_image_path, unique_name)
|
446 |
return [unique_name]
|
447 |
|
448 |
-
@spaces.GPU(duration=
|
449 |
def generate_90(
|
450 |
prompt: str,
|
451 |
negative_prompt: str = "",
|
@@ -456,7 +449,7 @@ def generate_90(
|
|
456 |
guidance_scale: float = 4,
|
457 |
num_inference_steps: int = 125,
|
458 |
use_resolution_binning: bool = True,
|
459 |
-
progress=gr.Progress(track_tqdm=True)
|
460 |
):
|
461 |
seed = random.randint(0, MAX_SEED)
|
462 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
274 |
import paramiko
|
275 |
import os
|
276 |
|
277 |
+
FTP_HOST = os.getenv("FTP_HOST")
|
278 |
FTP_USER = os.getenv("FTP_USER")
|
279 |
+
FTP_PASS = os.getenv("FTP_PASS")
|
280 |
FTP_DIR = os.getenv("FTP_DIR")
|
|
|
|
|
|
|
|
|
281 |
|
282 |
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
283 |
# adjust the batch_size of prompt_embeds according to guidance_scale
|
|
|
338 |
f.write(f"Steps: {num_inference_steps} \n")
|
339 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
340 |
f.write(f"SPACE SETUP: \n")
|
|
|
341 |
f.write(f"Model VAE: sdxl-vae-bf16\n")
|
342 |
f.write(f"To cuda and bfloat \n")
|
343 |
return filename
|
|
|
346 |
|
347 |
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
348 |
|
349 |
+
@spaces.GPU(duration=35)
|
350 |
def generate_30(
|
351 |
prompt: str,
|
352 |
negative_prompt: str = "",
|
|
|
357 |
guidance_scale: float = 4,
|
358 |
num_inference_steps: int = 125,
|
359 |
use_resolution_binning: bool = True,
|
360 |
+
progress=gr.Progress(track_tqdm=True)
|
361 |
):
|
362 |
seed = random.randint(0, MAX_SEED)
|
363 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
378 |
images = []
|
379 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
380 |
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
|
|
381 |
pyx.upload_to_ftp(filename)
|
|
|
382 |
batch_options = options.copy()
|
383 |
with torch.inference_mode():
|
384 |
rv_image = pipe(**batch_options).images[0]
|
|
|
396 |
os.symlink(sd_image_path, unique_name)
|
397 |
return [unique_name]
|
398 |
|
399 |
+
@spaces.GPU(duration=65)
|
400 |
def generate_60(
|
401 |
prompt: str,
|
402 |
negative_prompt: str = "",
|
|
|
407 |
guidance_scale: float = 4,
|
408 |
num_inference_steps: int = 125,
|
409 |
use_resolution_binning: bool = True,
|
410 |
+
progress=gr.Progress(track_tqdm=True)
|
411 |
):
|
412 |
seed = random.randint(0, MAX_SEED)
|
413 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
438 |
os.symlink(sd_image_path, unique_name)
|
439 |
return [unique_name]
|
440 |
|
441 |
+
@spaces.GPU(duration=95)
|
442 |
def generate_90(
|
443 |
prompt: str,
|
444 |
negative_prompt: str = "",
|
|
|
449 |
guidance_scale: float = 4,
|
450 |
num_inference_steps: int = 125,
|
451 |
use_resolution_binning: bool = True,
|
452 |
+
progress=gr.Progress(track_tqdm=True)
|
453 |
):
|
454 |
seed = random.randint(0, MAX_SEED)
|
455 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|