Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,78 +4,16 @@
|
|
4 |
# in the Software without restriction, including without limitation the rights
|
5 |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
6 |
# copies of the Software, and to permit persons to whom the Software is
|
7 |
-
import spaces
|
8 |
-
import
|
9 |
-
import subprocess
|
10 |
-
import re
|
11 |
|
12 |
#subprocess.run(['sh', './torch.sh'])
|
13 |
|
14 |
-
#import sys
|
15 |
-
#conda_prefix = os.path.expanduser("~/miniconda3")
|
16 |
-
#conda_bin = os.path.join(conda_prefix, "bin")
|
17 |
-
|
18 |
-
# Add Conda's bin directory to your PATH
|
19 |
-
#os.environ["PATH"] = conda_bin + os.pathsep + os.environ["PATH"]
|
20 |
-
|
21 |
-
# Activate the base environment (adjust if needed)
|
22 |
-
#os.system(f'{conda_bin}/conda init --all')
|
23 |
-
#os.system(f'{conda_bin}/conda activate base')
|
24 |
-
|
25 |
-
|
26 |
-
#os.system(f'{conda_bin}/conda install nvidia/label/cudnn-9.3.0::cudnn')
|
27 |
-
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries')
|
28 |
-
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries-dev')
|
29 |
-
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart')
|
30 |
-
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart-dev')
|
31 |
-
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-nvcc')
|
32 |
-
|
33 |
-
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-toolkit')
|
34 |
-
|
35 |
-
#subprocess.run(['pip', 'install', 'git+https://github.com/hidet-org/hidet.git'])
|
36 |
-
#subprocess.run(['pip', 'install', 'git+https://github.com/ford442/hidet.git@thread'])
|
37 |
-
|
38 |
-
#os.system(f'{conda_bin}/conda install pytorch::pytorch-cuda')
|
39 |
-
#os.system(f'{conda_bin}/conda install rcdr_py37::tensorrt')
|
40 |
-
#subprocess.run(['sh', './hidet.sh'])
|
41 |
-
#subprocess.run(['sh', './modelopt.sh'])
|
42 |
-
#import hidet
|
43 |
-
#print(dir(hidet))
|
44 |
-
#import torch_tensorrt
|
45 |
-
|
46 |
-
import random
|
47 |
-
import uuid
|
48 |
import gradio as gr
|
49 |
import numpy as np
|
50 |
from PIL import Image
|
51 |
|
52 |
-
import diffusers
|
53 |
-
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
54 |
-
from diffusers import EulerAncestralDiscreteScheduler
|
55 |
-
from typing import Tuple
|
56 |
-
import paramiko
|
57 |
-
import datetime
|
58 |
import cyper
|
59 |
-
from image_gen_aux import UpscaleWithModel
|
60 |
-
import torch
|
61 |
-
#import torch._dynamo
|
62 |
-
#torch._dynamo.list_backends()
|
63 |
-
import time
|
64 |
-
import gc
|
65 |
-
|
66 |
-
import torch.nn.functional as F
|
67 |
-
from sageattention import sageattn
|
68 |
-
|
69 |
-
torch.backends.cuda.matmul.allow_tf32 = False
|
70 |
-
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
71 |
-
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
72 |
-
torch.backends.cudnn.allow_tf32 = False
|
73 |
-
torch.backends.cudnn.deterministic = False
|
74 |
-
torch.backends.cudnn.benchmark = False
|
75 |
-
# torch.backends.cuda.preferred_blas_library="cublas"
|
76 |
-
# torch.backends.cuda.preferred_linalg_library="cusolver"
|
77 |
-
torch.set_float32_matmul_precision("highest")
|
78 |
-
|
79 |
|
80 |
DESCRIPTIONXX = """
|
81 |
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester C) ⚡⚡⚡⚡
|
@@ -119,135 +57,9 @@ style_list = [
|
|
119 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
120 |
DEFAULT_STYLE_NAME = "Style Zero"
|
121 |
STYLE_NAMES = list(styles.keys())
|
122 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
123 |
-
FTP_HOST = os.getenv("FTP_HOST")
|
124 |
-
FTP_USER = os.getenv("FTP_USER")
|
125 |
-
FTP_PASS = os.getenv("FTP_PASS")
|
126 |
-
FTP_DIR = os.getenv("FTP_DIR")
|
127 |
|
128 |
# os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
129 |
|
130 |
-
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
131 |
-
# adjust the batch_size of prompt_embeds according to guidance_scale
|
132 |
-
if step_index == int(pipeline.num_timesteps * 0.1):
|
133 |
-
print("-- swapping scheduler --")
|
134 |
-
# pipeline.scheduler = euler_scheduler
|
135 |
-
torch.set_float32_matmul_precision("high")
|
136 |
-
# pipe.vae = vae_b
|
137 |
-
torch.backends.cudnn.allow_tf32 = True
|
138 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
139 |
-
torch.backends.cudnn.deterministic = True
|
140 |
-
torch.backends.cuda.preferred_blas_library="cublaslt"
|
141 |
-
#if step_index == int(pipeline.num_timesteps * 0.5):
|
142 |
-
# torch.set_float32_matmul_precision("medium")
|
143 |
-
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
|
144 |
-
#pipe.unet.to(torch.float64)
|
145 |
-
# pipe.guidance_scale=1.0
|
146 |
-
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
147 |
-
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
148 |
-
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
|
149 |
-
if step_index == int(pipeline.num_timesteps * 0.9):
|
150 |
-
torch.backends.cuda.preferred_blas_library="cublas"
|
151 |
-
torch.backends.cudnn.allow_tf32 = False
|
152 |
-
torch.backends.cuda.matmul.allow_tf32 = False
|
153 |
-
torch.set_float32_matmul_precision("highest")
|
154 |
-
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
|
155 |
-
#pipe.unet.to(torch.float64)
|
156 |
-
# pipe.vae = vae_a
|
157 |
-
# pipe.unet = unet_a
|
158 |
-
torch.backends.cudnn.deterministic = False
|
159 |
-
#pipe.unet.set_default_attn_processor()
|
160 |
-
print("-- swapping scheduler --")
|
161 |
-
# pipeline.scheduler = heun_scheduler
|
162 |
-
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
163 |
-
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
|
164 |
-
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
|
165 |
-
return {"latents": callback_kwargs["latents"]}
|
166 |
-
|
167 |
-
'''
|
168 |
-
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
169 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
170 |
-
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
171 |
-
|
172 |
-
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
173 |
-
|
174 |
-
def load_and_prepare_model():
|
175 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1 ,use_karras_sigmas=True)
|
176 |
-
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
177 |
-
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
178 |
-
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
179 |
-
#txt_1 = CLIPTextModel.from_pretrained(device_map??)
|
180 |
-
#txt_2 = CLIPTextModel.from_pretrained(vae too?)
|
181 |
-
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
182 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
183 |
-
'ford442/RealVisXL_V5.0_BF16',
|
184 |
-
#torch_dtype=torch.bfloat16,
|
185 |
-
add_watermarker=False,
|
186 |
-
# low_cpu_mem_usage = False,
|
187 |
-
token = HF_TOKEN,
|
188 |
-
# scheduler = sched,
|
189 |
-
)
|
190 |
-
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
|
191 |
-
pipe.vae = vaeXL #.to(torch.bfloat16)
|
192 |
-
pipe.scheduler = sched
|
193 |
-
|
194 |
-
pipe.vae.do_resize = False
|
195 |
-
#pipe.vae.vae_scale_factor = 8
|
196 |
-
pipe.vae.do_convert_rgb = True
|
197 |
-
|
198 |
-
pipe.vae.set_default_attn_processor()
|
199 |
-
#pipe.to(device)
|
200 |
-
#pipe.to(torch.bfloat16)
|
201 |
-
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
|
202 |
-
pipe.watermark=None
|
203 |
-
pipe.safety_checker=None
|
204 |
-
|
205 |
-
''' ''' # Freeze vae and unet
|
206 |
-
pipe.vae.requires_grad_(False)
|
207 |
-
pipe.unet.requires_grad_(False)
|
208 |
-
pipe.text_encoder.requires_grad_(False)
|
209 |
-
pipe.unet.eval()
|
210 |
-
pipe.vae.eval()
|
211 |
-
pipe.text_encoder.eval()
|
212 |
-
''' '''
|
213 |
-
#pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
|
214 |
-
#pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/FLUX-dev-lora-add_details.safetensors", low_cpu_mem_usage=False)
|
215 |
-
#pipe.unet.to(memory_format=torch.channels_last)
|
216 |
-
#pipe.enable_vae_tiling()
|
217 |
-
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune') #.to(device=device, dtype=torch.bfloat16)
|
218 |
-
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)
|
219 |
-
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={'epilogue_fusion': True, 'shape_padding': True}) #.to(device=device, dtype=torch.bfloat16)
|
220 |
-
#pipe.unet = torch.compile(pipe.unet, dynamic=False)
|
221 |
-
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={"search_space": 0})
|
222 |
-
#pipe.unet = torch.compile(pipe.unet, backend="torch_tensorrt", dynamic=False, options={"precision": torch.bfloat16,"optimization_level": 4,})
|
223 |
-
pipe.to(torch.device('cuda:0'), torch.bfloat16)
|
224 |
-
|
225 |
-
return pipe
|
226 |
-
|
227 |
-
#hidet.option.parallel_build(False)
|
228 |
-
#hidet.option.parallel_tune(2,2.0)
|
229 |
-
#torch._dynamo.config.suppress_errors = True
|
230 |
-
#torch._dynamo.disallow_in_graph(diffusers.models.attention.BasicTransformerBlock)
|
231 |
-
|
232 |
-
# more search
|
233 |
-
#hidet.torch.dynamo_config.search_space(0)
|
234 |
-
#hidet.torch.dynamo_config.dump_graph_ir("./local_graph")
|
235 |
-
# hidet.option.cache_dir("local_cache")
|
236 |
-
# automatically transform the model to use float16 data type
|
237 |
-
#hidet.torch.dynamo_config.use_fp16(True)
|
238 |
-
# use float16 data type as the accumulate data type in operators with reduction
|
239 |
-
#hidet.torch.dynamo_config.use_fp16_reduction(True)
|
240 |
-
# use tensorcore
|
241 |
-
#hidet.torch.dynamo_config.use_tensor_core()
|
242 |
-
#hidet.torch.dynamo_config.steal_weights(False)
|
243 |
-
|
244 |
-
# Preload and compile both models
|
245 |
-
|
246 |
-
pipe = load_and_prepare_model()
|
247 |
-
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
|
248 |
-
|
249 |
-
'''
|
250 |
-
|
251 |
MAX_SEED = np.iinfo(np.int64).max
|
252 |
|
253 |
def upload_to_ftp(filename):
|
@@ -283,6 +95,16 @@ import torch
|
|
283 |
import paramiko
|
284 |
import os
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
287 |
|
288 |
FTP_HOST = os.getenv("FTP_HOST")
|
@@ -429,9 +251,8 @@ def load_and_prepare_model():
|
|
429 |
pipe = load_and_prepare_model()
|
430 |
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
|
431 |
|
432 |
-
|
433 |
@spaces.GPU(duration=40)
|
434 |
-
def
|
435 |
prompt: str,
|
436 |
negative_prompt: str = "",
|
437 |
use_negative_prompt: bool = False,
|
@@ -483,12 +304,9 @@ def generate_30c(
|
|
483 |
unique_name = str(uuid.uuid4()) + ".png"
|
484 |
os.symlink(sd_image_path, unique_name)
|
485 |
return [unique_name]
|
486 |
-
|
487 |
-
'''
|
488 |
-
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
489 |
|
490 |
-
@spaces.GPU(duration=
|
491 |
-
def
|
492 |
prompt: str,
|
493 |
negative_prompt: str = "",
|
494 |
use_negative_prompt: bool = False,
|
@@ -517,75 +335,26 @@ def generate_30(
|
|
517 |
"num_inference_steps": num_inference_steps,
|
518 |
"generator": generator,
|
519 |
"output_type": "pil",
|
520 |
-
"callback_on_step_end":
|
521 |
}
|
522 |
if use_resolution_binning:
|
523 |
options["use_resolution_binning"] = True
|
524 |
images = []
|
525 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
526 |
-
filename =
|
527 |
-
|
528 |
batch_options = options.copy()
|
529 |
rv_image = pipe(**batch_options).images[0]
|
530 |
sd_image_path = f"rv_C_{timestamp}.png"
|
531 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
532 |
-
|
533 |
torch.set_float32_matmul_precision("medium")
|
534 |
with torch.no_grad():
|
535 |
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
536 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
537 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
538 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
539 |
-
|
540 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
541 |
-
os.symlink(sd_image_path, unique_name)
|
542 |
-
return [unique_name]
|
543 |
-
|
544 |
-
@spaces.GPU(duration=70)
|
545 |
-
def generate_60(
|
546 |
-
prompt: str,
|
547 |
-
negative_prompt: str = "",
|
548 |
-
use_negative_prompt: bool = False,
|
549 |
-
style_selection: str = "",
|
550 |
-
width: int = 768,
|
551 |
-
height: int = 768,
|
552 |
-
guidance_scale: float = 4,
|
553 |
-
num_inference_steps: int = 125,
|
554 |
-
sage: bool = False,
|
555 |
-
use_resolution_binning: bool = True,
|
556 |
-
progress=gr.Progress(track_tqdm=True)
|
557 |
-
):
|
558 |
-
if sage==True:
|
559 |
-
F.scaled_dot_product_attention = sageattn
|
560 |
-
if sage==False:
|
561 |
-
F.scaled_dot_product_attention = F.scaled_dot_product_attention
|
562 |
-
seed = random.randint(0, MAX_SEED)
|
563 |
-
generator = torch.Generator(device='cuda').manual_seed(seed)
|
564 |
-
options = {
|
565 |
-
"prompt": [prompt],
|
566 |
-
"negative_prompt": [negative_prompt],
|
567 |
-
"negative_prompt_2": [neg_prompt_2],
|
568 |
-
"width": width,
|
569 |
-
"height": height,
|
570 |
-
"guidance_scale": guidance_scale,
|
571 |
-
"num_inference_steps": num_inference_steps,
|
572 |
-
"generator": generator,
|
573 |
-
"output_type": "pil",
|
574 |
-
"callback_on_step_end": pyx.scheduler_swap_callback,
|
575 |
-
}
|
576 |
-
if use_resolution_binning:
|
577 |
-
options["use_resolution_binning"] = True
|
578 |
-
images = []
|
579 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
580 |
-
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
581 |
-
batch_options = options.copy()
|
582 |
-
gc.collect()
|
583 |
-
torch.cuda.empty_cache()
|
584 |
-
time.sleep(2)
|
585 |
-
rv_image = pipe(**batch_options).images[0]
|
586 |
-
sd_image_path = f"rv_C_{timestamp}.png"
|
587 |
-
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
588 |
-
upload_to_ftp(sd_image_path)
|
589 |
unique_name = str(uuid.uuid4()) + ".png"
|
590 |
os.symlink(sd_image_path, unique_name)
|
591 |
return [unique_name]
|
@@ -620,25 +389,33 @@ def generate_90(
|
|
620 |
"num_inference_steps": num_inference_steps,
|
621 |
"generator": generator,
|
622 |
"output_type": "pil",
|
623 |
-
"callback_on_step_end":
|
624 |
}
|
625 |
if use_resolution_binning:
|
626 |
options["use_resolution_binning"] = True
|
627 |
images = []
|
628 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
629 |
-
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
|
|
630 |
batch_options = options.copy()
|
631 |
-
gc.collect()
|
632 |
-
torch.cuda.empty_cache()
|
633 |
-
time.sleep(2)
|
634 |
rv_image = pipe(**batch_options).images[0]
|
635 |
sd_image_path = f"rv_C_{timestamp}.png"
|
636 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
637 |
upload_to_ftp(sd_image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
unique_name = str(uuid.uuid4()) + ".png"
|
639 |
os.symlink(sd_image_path, unique_name)
|
640 |
return [unique_name]
|
641 |
|
|
|
|
|
|
|
642 |
def load_predefined_images1():
|
643 |
predefined_images1 = [
|
644 |
"assets/7.png",
|
@@ -677,7 +454,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
677 |
placeholder="Enter your prompt",
|
678 |
container=False,
|
679 |
)
|
680 |
-
run_button_30c = gr.Button("Run 30 Seconds", scale=0)
|
681 |
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
|
682 |
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
|
683 |
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
|
@@ -756,33 +532,13 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
756 |
outputs=negative_prompt,
|
757 |
api_name=False,
|
758 |
)
|
759 |
-
|
760 |
-
gr.on(
|
761 |
-
triggers=[
|
762 |
-
run_button_30c.click,
|
763 |
-
],
|
764 |
-
# api_name="generate", # Add this line
|
765 |
-
fn=pyx.generate_30c,
|
766 |
-
inputs=[
|
767 |
-
prompt,
|
768 |
-
negative_prompt,
|
769 |
-
use_negative_prompt,
|
770 |
-
style_selection,
|
771 |
-
width,
|
772 |
-
height,
|
773 |
-
guidance_scale,
|
774 |
-
num_inference_steps,
|
775 |
-
sage,
|
776 |
-
],
|
777 |
-
outputs=[result],
|
778 |
-
)
|
779 |
-
|
780 |
gr.on(
|
781 |
triggers=[
|
782 |
run_button_30.click,
|
783 |
],
|
784 |
# api_name="generate", # Add this line
|
785 |
-
fn=generate_30,
|
786 |
inputs=[
|
787 |
prompt,
|
788 |
negative_prompt,
|
@@ -802,7 +558,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
802 |
run_button_60.click,
|
803 |
],
|
804 |
# api_name="generate", # Add this line
|
805 |
-
fn=generate_60,
|
806 |
inputs=[
|
807 |
prompt,
|
808 |
negative_prompt,
|
@@ -822,7 +578,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
822 |
run_button_90.click,
|
823 |
],
|
824 |
# api_name="generate", # Add this line
|
825 |
-
fn=generate_90,
|
826 |
inputs=[
|
827 |
prompt,
|
828 |
negative_prompt,
|
|
|
4 |
# in the Software without restriction, including without limitation the rights
|
5 |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
6 |
# copies of the Software, and to permit persons to whom the Software is
|
7 |
+
#import spaces
|
8 |
+
#import subprocess
|
|
|
|
|
9 |
|
10 |
#subprocess.run(['sh', './torch.sh'])
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import gradio as gr
|
13 |
import numpy as np
|
14 |
from PIL import Image
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
import cyper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
DESCRIPTIONXX = """
|
19 |
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester C) ⚡⚡⚡⚡
|
|
|
57 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
58 |
DEFAULT_STYLE_NAME = "Style Zero"
|
59 |
STYLE_NAMES = list(styles.keys())
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
MAX_SEED = np.iinfo(np.int64).max
|
64 |
|
65 |
def upload_to_ftp(filename):
|
|
|
95 |
import paramiko
|
96 |
import os
|
97 |
|
98 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
99 |
+
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
100 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
101 |
+
torch.backends.cudnn.allow_tf32 = False
|
102 |
+
torch.backends.cudnn.deterministic = False
|
103 |
+
torch.backends.cudnn.benchmark = False
|
104 |
+
# torch.backends.cuda.preferred_blas_library="cublas"
|
105 |
+
# torch.backends.cuda.preferred_linalg_library="cusolver"
|
106 |
+
torch.set_float32_matmul_precision("highest")
|
107 |
+
|
108 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
109 |
|
110 |
FTP_HOST = os.getenv("FTP_HOST")
|
|
|
251 |
pipe = load_and_prepare_model()
|
252 |
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
|
253 |
|
|
|
254 |
@spaces.GPU(duration=40)
|
255 |
+
def generate_30(
|
256 |
prompt: str,
|
257 |
negative_prompt: str = "",
|
258 |
use_negative_prompt: bool = False,
|
|
|
304 |
unique_name = str(uuid.uuid4()) + ".png"
|
305 |
os.symlink(sd_image_path, unique_name)
|
306 |
return [unique_name]
|
|
|
|
|
|
|
307 |
|
308 |
+
@spaces.GPU(duration=70)
|
309 |
+
def generate_60(
|
310 |
prompt: str,
|
311 |
negative_prompt: str = "",
|
312 |
use_negative_prompt: bool = False,
|
|
|
335 |
"num_inference_steps": num_inference_steps,
|
336 |
"generator": generator,
|
337 |
"output_type": "pil",
|
338 |
+
"callback_on_step_end": scheduler_swap_callback,
|
339 |
}
|
340 |
if use_resolution_binning:
|
341 |
options["use_resolution_binning"] = True
|
342 |
images = []
|
343 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
344 |
+
filename = uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
345 |
+
upload_to_ftp(filename)
|
346 |
batch_options = options.copy()
|
347 |
rv_image = pipe(**batch_options).images[0]
|
348 |
sd_image_path = f"rv_C_{timestamp}.png"
|
349 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
350 |
+
upload_to_ftp(sd_image_path)
|
351 |
torch.set_float32_matmul_precision("medium")
|
352 |
with torch.no_grad():
|
353 |
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
354 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
355 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
356 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
357 |
+
upload_to_ftp(downscale_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
unique_name = str(uuid.uuid4()) + ".png"
|
359 |
os.symlink(sd_image_path, unique_name)
|
360 |
return [unique_name]
|
|
|
389 |
"num_inference_steps": num_inference_steps,
|
390 |
"generator": generator,
|
391 |
"output_type": "pil",
|
392 |
+
"callback_on_step_end": scheduler_swap_callback,
|
393 |
}
|
394 |
if use_resolution_binning:
|
395 |
options["use_resolution_binning"] = True
|
396 |
images = []
|
397 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
398 |
+
filename = uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
399 |
+
upload_to_ftp(filename)
|
400 |
batch_options = options.copy()
|
|
|
|
|
|
|
401 |
rv_image = pipe(**batch_options).images[0]
|
402 |
sd_image_path = f"rv_C_{timestamp}.png"
|
403 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
404 |
upload_to_ftp(sd_image_path)
|
405 |
+
torch.set_float32_matmul_precision("medium")
|
406 |
+
with torch.no_grad():
|
407 |
+
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
408 |
+
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
409 |
+
downscale_path = f"rv50_upscale_{timestamp}.png"
|
410 |
+
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
411 |
+
upload_to_ftp(downscale_path)
|
412 |
unique_name = str(uuid.uuid4()) + ".png"
|
413 |
os.symlink(sd_image_path, unique_name)
|
414 |
return [unique_name]
|
415 |
|
416 |
+
'''
|
417 |
+
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
418 |
+
|
419 |
def load_predefined_images1():
|
420 |
predefined_images1 = [
|
421 |
"assets/7.png",
|
|
|
454 |
placeholder="Enter your prompt",
|
455 |
container=False,
|
456 |
)
|
|
|
457 |
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
|
458 |
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
|
459 |
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
|
|
|
532 |
outputs=negative_prompt,
|
533 |
api_name=False,
|
534 |
)
|
535 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
gr.on(
|
537 |
triggers=[
|
538 |
run_button_30.click,
|
539 |
],
|
540 |
# api_name="generate", # Add this line
|
541 |
+
fn=pyx.generate_30,
|
542 |
inputs=[
|
543 |
prompt,
|
544 |
negative_prompt,
|
|
|
558 |
run_button_60.click,
|
559 |
],
|
560 |
# api_name="generate", # Add this line
|
561 |
+
fn=pyx.generate_60,
|
562 |
inputs=[
|
563 |
prompt,
|
564 |
negative_prompt,
|
|
|
578 |
run_button_90.click,
|
579 |
],
|
580 |
# api_name="generate", # Add this line
|
581 |
+
fn=pyx.generate_90,
|
582 |
inputs=[
|
583 |
prompt,
|
584 |
negative_prompt,
|