Update app.py
Browse files
app.py
CHANGED
|
@@ -34,7 +34,7 @@ FTP_PASS = "GoogleBez12!"
|
|
| 34 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
| 35 |
|
| 36 |
DESCRIPTIONXX = """
|
| 37 |
-
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester
|
| 38 |
"""
|
| 39 |
|
| 40 |
examples = [
|
|
@@ -78,7 +78,42 @@ STYLE_NAMES = list(styles.keys())
|
|
| 78 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 79 |
|
| 80 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def load_and_prepare_model():
|
| 83 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
|
| 84 |
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
|
@@ -100,7 +135,7 @@ def load_and_prepare_model():
|
|
| 100 |
return pipe
|
| 101 |
|
| 102 |
# Preload and compile both models
|
| 103 |
-
pipe =load_and_prepare_model()
|
| 104 |
|
| 105 |
MAX_SEED = np.iinfo(np.int32).max
|
| 106 |
|
|
@@ -172,6 +207,7 @@ def generate_30(
|
|
| 172 |
"num_inference_steps": num_inference_steps,
|
| 173 |
"generator": generator,
|
| 174 |
"output_type": "pil",
|
|
|
|
| 175 |
}
|
| 176 |
if use_resolution_binning:
|
| 177 |
options["use_resolution_binning"] = True
|
|
@@ -212,6 +248,7 @@ def generate_60(
|
|
| 212 |
"num_inference_steps": num_inference_steps,
|
| 213 |
"generator": generator,
|
| 214 |
"output_type": "pil",
|
|
|
|
| 215 |
}
|
| 216 |
if use_resolution_binning:
|
| 217 |
options["use_resolution_binning"] = True
|
|
@@ -252,6 +289,7 @@ def generate_90(
|
|
| 252 |
"num_inference_steps": num_inference_steps,
|
| 253 |
"generator": generator,
|
| 254 |
"output_type": "pil",
|
|
|
|
| 255 |
}
|
| 256 |
if use_resolution_binning:
|
| 257 |
options["use_resolution_binning"] = True
|
|
|
|
| 34 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
| 35 |
|
| 36 |
DESCRIPTIONXX = """
|
| 37 |
+
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester C) ⚡⚡⚡⚡
|
| 38 |
"""
|
| 39 |
|
| 40 |
examples = [
|
|
|
|
| 78 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 79 |
|
| 80 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 81 |
+
|
| 82 |
+
def scheduler_swap_callback(pipeline, step_index, timestep):
|
| 83 |
+
# adjust the batch_size of prompt_embeds according to guidance_scale
|
| 84 |
+
if step_index == int(pipeline.num_timesteps * 0.1):
|
| 85 |
+
print("-- swapping scheduler --")
|
| 86 |
+
# pipeline.scheduler = euler_scheduler
|
| 87 |
+
torch.set_float32_matmul_precision("high")
|
| 88 |
+
# pipe.vae = vae_b
|
| 89 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 90 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 91 |
+
# torch.backends.cudnn.deterministic = True
|
| 92 |
+
torch.backends.cuda.preferred_blas_library="cublaslt"
|
| 93 |
+
if step_index == int(pipeline.num_timesteps * 0.5):
|
| 94 |
+
# torch.set_float32_matmul_precision("medium")
|
| 95 |
+
pipe.unet.to(torch.float64)
|
| 96 |
+
# pipe.guidance_scale=1.0
|
| 97 |
+
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
| 98 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
| 99 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
|
| 100 |
+
if step_index == int(pipeline.num_timesteps * 0.9):
|
| 101 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
| 102 |
+
torch.backends.cudnn.allow_tf32 = False
|
| 103 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
| 104 |
+
torch.set_float32_matmul_precision("highest")
|
| 105 |
+
pipe.unet.to(torch.bfloat16)
|
| 106 |
+
# pipe.vae = vae_a
|
| 107 |
+
# pipe.unet = unet_a
|
| 108 |
+
# torch.backends.cudnn.deterministic = False
|
| 109 |
+
print("-- swapping scheduler --")
|
| 110 |
+
# pipeline.scheduler = heun_scheduler
|
| 111 |
+
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
| 112 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
|
| 113 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
|
| 114 |
+
return
|
| 115 |
+
|
| 116 |
+
|
| 117 |
def load_and_prepare_model():
|
| 118 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
|
| 119 |
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
|
|
|
| 135 |
return pipe
|
| 136 |
|
| 137 |
# Preload and compile both models
|
| 138 |
+
pipe = load_and_prepare_model()
|
| 139 |
|
| 140 |
MAX_SEED = np.iinfo(np.int32).max
|
| 141 |
|
|
|
|
| 207 |
"num_inference_steps": num_inference_steps,
|
| 208 |
"generator": generator,
|
| 209 |
"output_type": "pil",
|
| 210 |
+
"callback_on_step_end": scheduler_swap_callback
|
| 211 |
}
|
| 212 |
if use_resolution_binning:
|
| 213 |
options["use_resolution_binning"] = True
|
|
|
|
| 248 |
"num_inference_steps": num_inference_steps,
|
| 249 |
"generator": generator,
|
| 250 |
"output_type": "pil",
|
| 251 |
+
"callback_on_step_end": scheduler_swap_callback
|
| 252 |
}
|
| 253 |
if use_resolution_binning:
|
| 254 |
options["use_resolution_binning"] = True
|
|
|
|
| 289 |
"num_inference_steps": num_inference_steps,
|
| 290 |
"generator": generator,
|
| 291 |
"output_type": "pil",
|
| 292 |
+
"callback_on_step_end": scheduler_swap_callback
|
| 293 |
}
|
| 294 |
if use_resolution_binning:
|
| 295 |
options["use_resolution_binning"] = True
|