Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -80,8 +80,6 @@ HF_TOKEN = os.getenv("HF_TOKEN") 
     | 
|
| 80 | 
         
             
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
         
     | 
| 81 | 
         | 
| 82 | 
         
             
            def load_and_prepare_model():
         
     | 
| 83 | 
         
            -
                model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
         
     | 
| 84 | 
         
            -
                dtype = model_dtypes.get(model_id, torch.bfloat16)  # Default to float32 if not found
         
     | 
| 85 | 
         
             
                vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
         
     | 
| 86 | 
         
             
                sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
         
     | 
| 87 | 
         
             
                pipe = StableDiffusionXLPipeline.from_pretrained(
         
     | 
| 
         | 
|
| 80 | 
         
             
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
         
     | 
| 81 | 
         | 
| 82 | 
         
             
            def load_and_prepare_model():
         
     | 
| 
         | 
|
| 
         | 
|
| 83 | 
         
             
                vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
         
     | 
| 84 | 
         
             
                sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
         
     | 
| 85 | 
         
             
                pipe = StableDiffusionXLPipeline.from_pretrained(
         
     |