ford442 commited on
Commit
070cfe4
·
verified ·
1 Parent(s): 8e240a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -20,7 +20,7 @@ os.environ["PATH"] = conda_bin + os.pathsep + os.environ["PATH"]
20
  # Activate the base environment (adjust if needed)
21
  os.system(f'{conda_bin}/conda init --all')
22
  os.system(f'{conda_bin}/conda activate base')
23
- #os.system(f'{conda_bin}/conda install nvidia/label/cudnn-9.3.0::cudnn')
24
  os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries')
25
  os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries-dev')
26
  os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart')
@@ -34,6 +34,7 @@ os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-nvcc')
34
  #subprocess.run(['sh', './hidet.sh'])
35
  import hidet
36
  #print(dir(hidet))
 
37
 
38
  import random
39
  import uuid
@@ -194,8 +195,9 @@ def load_and_prepare_model():
194
 
195
  #pipe.unet.to(memory_format=torch.channels_last)
196
  #pipe.enable_vae_tiling()
197
- pipe.unet = torch.compile(pipe.unet, backend="hidet")
198
  #pipe.unet = torch.compile(pipe.unet, backend="cudagraphs", dynamic=False)
 
199
  pipe.to(device=device, dtype=torch.bfloat16)
200
 
201
  return pipe
 
20
  # Activate the base environment (adjust if needed)
21
  os.system(f'{conda_bin}/conda init --all')
22
  os.system(f'{conda_bin}/conda activate base')
23
+ os.system(f'{conda_bin}/conda install nvidia/label/cudnn-9.3.0::cudnn')
24
  os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries')
25
  os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries-dev')
26
  os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart')
 
34
  #subprocess.run(['sh', './hidet.sh'])
35
  import hidet
36
  #print(dir(hidet))
37
+ import torch_tensorrt
38
 
39
  import random
40
  import uuid
 
195
 
196
  #pipe.unet.to(memory_format=torch.channels_last)
197
  #pipe.enable_vae_tiling()
198
+ #pipe.unet = torch.compile(pipe.unet, backend="hidet")
199
  #pipe.unet = torch.compile(pipe.unet, backend="cudagraphs", dynamic=False)
200
+ pipe.unet = torch.compile(pipe.unet, backend="torch_tensorrt", dynamic=False, options={"precision": torch.bfloat16,"optimization_level": 4,})
201
  pipe.to(device=device, dtype=torch.bfloat16)
202
 
203
  return pipe