Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,8 +14,8 @@ from PIL import Image
|
|
| 14 |
import torch
|
| 15 |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
|
| 16 |
from diffusers import EulerAncestralDiscreteScheduler
|
| 17 |
-
from diffusers import DPMSolverMultistepScheduler
|
| 18 |
-
from diffusers import AsymmetricAutoencoderKL
|
| 19 |
from typing import Tuple
|
| 20 |
import paramiko
|
| 21 |
import gc
|
|
@@ -92,7 +92,7 @@ def load_and_prepare_model(model_id):
|
|
| 92 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 93 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 94 |
#vaeX = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
|
| 95 |
-
|
| 96 |
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
| 97 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
| 98 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
|
@@ -239,6 +239,7 @@ def generate_30(
|
|
| 239 |
randomize_seed: bool = False,
|
| 240 |
use_resolution_binning: bool = True,
|
| 241 |
num_images: int = 1,
|
|
|
|
| 242 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 243 |
):
|
| 244 |
torch.backends.cudnn.benchmark = False
|
|
@@ -246,6 +247,8 @@ def generate_30(
|
|
| 246 |
gc.collect()
|
| 247 |
global models
|
| 248 |
pipe = models[model_choice]
|
|
|
|
|
|
|
| 249 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 250 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 251 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
@@ -295,7 +298,8 @@ def generate_60(
|
|
| 295 |
num_inference_steps: int = 250,
|
| 296 |
randomize_seed: bool = False,
|
| 297 |
use_resolution_binning: bool = True,
|
| 298 |
-
num_images: int = 1,
|
|
|
|
| 299 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 300 |
):
|
| 301 |
torch.backends.cudnn.benchmark = True
|
|
@@ -303,6 +307,8 @@ def generate_60(
|
|
| 303 |
gc.collect()
|
| 304 |
global models
|
| 305 |
pipe = models[model_choice]
|
|
|
|
|
|
|
| 306 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 307 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 308 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
@@ -353,6 +359,7 @@ def generate_90(
|
|
| 353 |
randomize_seed: bool = False,
|
| 354 |
use_resolution_binning: bool = True,
|
| 355 |
num_images: int = 1,
|
|
|
|
| 356 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 357 |
):
|
| 358 |
torch.backends.cudnn.benchmark = True
|
|
@@ -360,6 +367,8 @@ def generate_90(
|
|
| 360 |
gc.collect()
|
| 361 |
global models
|
| 362 |
pipe = models[model_choice]
|
|
|
|
|
|
|
| 363 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 364 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 365 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
@@ -479,6 +488,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
| 479 |
value=0,
|
| 480 |
)
|
| 481 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
| 482 |
with gr.Row():
|
| 483 |
width = gr.Slider(
|
| 484 |
label="Width",
|
|
@@ -541,7 +551,8 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
| 541 |
guidance_scale,
|
| 542 |
num_inference_steps,
|
| 543 |
randomize_seed,
|
| 544 |
-
num_images,
|
|
|
|
| 545 |
],
|
| 546 |
outputs=[result, seed],
|
| 547 |
)
|
|
@@ -564,7 +575,8 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
| 564 |
guidance_scale,
|
| 565 |
num_inference_steps,
|
| 566 |
randomize_seed,
|
| 567 |
-
num_images,
|
|
|
|
| 568 |
],
|
| 569 |
outputs=[result, seed],
|
| 570 |
)
|
|
@@ -587,7 +599,8 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
| 587 |
guidance_scale,
|
| 588 |
num_inference_steps,
|
| 589 |
randomize_seed,
|
| 590 |
-
num_images,
|
|
|
|
| 591 |
],
|
| 592 |
outputs=[result, seed],
|
| 593 |
)
|
|
|
|
| 14 |
import torch
|
| 15 |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, UNet2DConditionModel
|
| 16 |
from diffusers import EulerAncestralDiscreteScheduler
|
| 17 |
+
#from diffusers import DPMSolverMultistepScheduler
|
| 18 |
+
#from diffusers import AsymmetricAutoencoderKL
|
| 19 |
from typing import Tuple
|
| 20 |
import paramiko
|
| 21 |
import gc
|
|
|
|
| 92 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
| 93 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
| 94 |
#vaeX = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
|
| 95 |
+
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False).to(device=device, dtype=torch.bfloat16)
|
| 96 |
#vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
|
| 97 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
| 98 |
#vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
|
|
|
| 239 |
randomize_seed: bool = False,
|
| 240 |
use_resolution_binning: bool = True,
|
| 241 |
num_images: int = 1,
|
| 242 |
+
juggernaut: bool = True,
|
| 243 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 244 |
):
|
| 245 |
torch.backends.cudnn.benchmark = False
|
|
|
|
| 247 |
gc.collect()
|
| 248 |
global models
|
| 249 |
pipe = models[model_choice]
|
| 250 |
+
if juggernaut == False:
|
| 251 |
+
pipe.vae=vaeXL
|
| 252 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 253 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 254 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
|
| 298 |
num_inference_steps: int = 250,
|
| 299 |
randomize_seed: bool = False,
|
| 300 |
use_resolution_binning: bool = True,
|
| 301 |
+
num_images: int = 1,
|
| 302 |
+
juggernaut: bool = True,
|
| 303 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 304 |
):
|
| 305 |
torch.backends.cudnn.benchmark = True
|
|
|
|
| 307 |
gc.collect()
|
| 308 |
global models
|
| 309 |
pipe = models[model_choice]
|
| 310 |
+
if juggernaut == False:
|
| 311 |
+
pipe.vae=vaeXL
|
| 312 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 313 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 314 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
|
| 359 |
randomize_seed: bool = False,
|
| 360 |
use_resolution_binning: bool = True,
|
| 361 |
num_images: int = 1,
|
| 362 |
+
juggernaut: bool = True,
|
| 363 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
| 364 |
):
|
| 365 |
torch.backends.cudnn.benchmark = True
|
|
|
|
| 367 |
gc.collect()
|
| 368 |
global models
|
| 369 |
pipe = models[model_choice]
|
| 370 |
+
if juggernaut == False:
|
| 371 |
+
pipe.vae=vaeXL
|
| 372 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 373 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 374 |
#prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
|
|
|
| 488 |
value=0,
|
| 489 |
)
|
| 490 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 491 |
+
juggernaut = gr.Checkbox(label="Use Juggernaut VAE", value=True)
|
| 492 |
with gr.Row():
|
| 493 |
width = gr.Slider(
|
| 494 |
label="Width",
|
|
|
|
| 551 |
guidance_scale,
|
| 552 |
num_inference_steps,
|
| 553 |
randomize_seed,
|
| 554 |
+
num_images,
|
| 555 |
+
juggernaut,
|
| 556 |
],
|
| 557 |
outputs=[result, seed],
|
| 558 |
)
|
|
|
|
| 575 |
guidance_scale,
|
| 576 |
num_inference_steps,
|
| 577 |
randomize_seed,
|
| 578 |
+
num_images,
|
| 579 |
+
juggernaut,
|
| 580 |
],
|
| 581 |
outputs=[result, seed],
|
| 582 |
)
|
|
|
|
| 599 |
guidance_scale,
|
| 600 |
num_inference_steps,
|
| 601 |
randomize_seed,
|
| 602 |
+
num_images,
|
| 603 |
+
juggernaut,
|
| 604 |
],
|
| 605 |
outputs=[result, seed],
|
| 606 |
)
|