Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,18 @@
|
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
import random
|
| 11 |
import uuid
|
| 12 |
import gradio as gr
|
|
@@ -28,25 +40,20 @@ from gradio import themes
|
|
| 28 |
from image_gen_aux import UpscaleWithModel
|
| 29 |
#from diffusers.models.attention_processor import AttnProcessor2_0
|
| 30 |
|
| 31 |
-
torch.backends.cuda.matmul.allow_tf32 =
|
| 32 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
| 33 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
| 34 |
-
torch.backends.cudnn.allow_tf32 =
|
| 35 |
torch.backends.cudnn.deterministic = False
|
| 36 |
-
torch.backends.cudnn.benchmark =
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
torch.set_float32_matmul_precision("highest")
|
| 41 |
-
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
|
| 42 |
-
|
| 43 |
-
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
| 44 |
FTP_HOST = "1ink.us"
|
| 45 |
FTP_USER = "ford442"
|
| 46 |
FTP_PASS = os.getenv("FTP_PASS")
|
| 47 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
| 48 |
|
| 49 |
-
|
| 50 |
DESCRIPTIONXX = """
|
| 51 |
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester A) ⚡⚡⚡⚡
|
| 52 |
"""
|
|
@@ -116,7 +123,7 @@ def load_and_prepare_model():
|
|
| 116 |
#vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
|
| 117 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 118 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
| 119 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler'
|
| 120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 121 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
| 122 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
|
@@ -214,7 +221,8 @@ def load_and_prepare_model():
|
|
| 214 |
#pipe.unet.set_default_attn_processor()
|
| 215 |
|
| 216 |
#**** BETTER WAY ****#
|
| 217 |
-
pipe.to(device, torch.bfloat16)
|
|
|
|
| 218 |
#**** BETTER WAY ****#
|
| 219 |
|
| 220 |
#pipe.to(device)
|
|
@@ -326,7 +334,8 @@ def generate_30(
|
|
| 326 |
#gc.collect()
|
| 327 |
torch.set_float32_matmul_precision("medium")
|
| 328 |
with torch.no_grad():
|
| 329 |
-
|
|
|
|
| 330 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 331 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
| 332 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
@@ -382,7 +391,8 @@ def generate_60(
|
|
| 382 |
#gc.collect()
|
| 383 |
torch.set_float32_matmul_precision("medium")
|
| 384 |
with torch.no_grad():
|
| 385 |
-
|
|
|
|
| 386 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 387 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
| 388 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
@@ -438,7 +448,8 @@ def generate_90(
|
|
| 438 |
#gc.collect()
|
| 439 |
torch.set_float32_matmul_precision("medium")
|
| 440 |
with torch.no_grad():
|
| 441 |
-
|
|
|
|
| 442 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 443 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
| 444 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
|
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
import os
|
| 10 |
+
|
| 11 |
+
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
| 12 |
+
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
| 13 |
+
alloc_conf_parts = [
|
| 14 |
+
'expandable_segments:True',
|
| 15 |
+
'pinned_use_background_threads:True' # Specific to pinned memory.
|
| 16 |
+
]
|
| 17 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
|
| 18 |
+
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
| 19 |
+
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
| 20 |
+
|
| 21 |
+
|
| 22 |
import random
|
| 23 |
import uuid
|
| 24 |
import gradio as gr
|
|
|
|
| 40 |
from image_gen_aux import UpscaleWithModel
|
| 41 |
#from diffusers.models.attention_processor import AttnProcessor2_0
|
| 42 |
|
| 43 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 44 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
| 45 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
| 46 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 47 |
torch.backends.cudnn.deterministic = False
|
| 48 |
+
torch.backends.cudnn.benchmark = True
|
| 49 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
| 50 |
+
torch.backends.cuda.preferred_linalg_library="cusolver"
|
|
|
|
| 51 |
torch.set_float32_matmul_precision("highest")
|
|
|
|
|
|
|
|
|
|
| 52 |
FTP_HOST = "1ink.us"
|
| 53 |
FTP_USER = "ford442"
|
| 54 |
FTP_PASS = os.getenv("FTP_PASS")
|
| 55 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
| 56 |
|
|
|
|
| 57 |
DESCRIPTIONXX = """
|
| 58 |
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester A) ⚡⚡⚡⚡
|
| 59 |
"""
|
|
|
|
| 123 |
#vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
|
| 124 |
#unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
|
| 125 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
| 126 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler') #,beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=False)
|
| 127 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
| 128 |
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
| 129 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
|
|
|
| 221 |
#pipe.unet.set_default_attn_processor()
|
| 222 |
|
| 223 |
#**** BETTER WAY ****#
|
| 224 |
+
#pipe.to(device, torch.bfloat16)
|
| 225 |
+
pipe.to(device)
|
| 226 |
#**** BETTER WAY ****#
|
| 227 |
|
| 228 |
#pipe.to(device)
|
|
|
|
| 334 |
#gc.collect()
|
| 335 |
torch.set_float32_matmul_precision("medium")
|
| 336 |
with torch.no_grad():
|
| 337 |
+
upscalea = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
| 338 |
+
upscale = upscaler(upscalea, tiling=True, tile_width=256, tile_height=256)
|
| 339 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 340 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
| 341 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
|
|
| 391 |
#gc.collect()
|
| 392 |
torch.set_float32_matmul_precision("medium")
|
| 393 |
with torch.no_grad():
|
| 394 |
+
upscalea = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
| 395 |
+
upscale = upscaler(upscalea, tiling=True, tile_width=256, tile_height=256)
|
| 396 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 397 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
| 398 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
|
|
|
| 448 |
#gc.collect()
|
| 449 |
torch.set_float32_matmul_precision("medium")
|
| 450 |
with torch.no_grad():
|
| 451 |
+
upscalea = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
| 452 |
+
upscale = upscaler(upscalea, tiling=True, tile_width=256, tile_height=256)
|
| 453 |
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 454 |
downscale_path = f"rv50_upscale_{timestamp}.png"
|
| 455 |
downscale1.save(downscale_path,optimize=False,compress_level=0)
|