nehulagrawal commited on
Commit
037139b
·
1 Parent(s): f591895

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -73
app.py CHANGED
@@ -1,86 +1,105 @@
1
  import gradio as gr
2
- import torch
3
- from sahi.prediction import ObjectPrediction
4
- from sahi.utils.cv import visualize_object_predictions, read_image
5
- from ultralyticsplus import YOLO, render_result
6
 
 
7
 
8
- def yolov8_inference(
9
- image: gr.inputs.Image = None,
10
- model_path: gr.inputs.Dropdown = None,
11
- image_size: gr.inputs.Slider = 640,
12
- conf_threshold: gr.inputs.Slider = 0.25,
13
- iou_threshold: gr.inputs.Slider = 0.45,
14
- ):
15
- """
16
- YOLOv8 inference function
17
- Args:
18
- image: Input image
19
- model_path: Path to the model
20
- image_size: Image size
21
- conf_threshold: Confidence threshold
22
- iou_threshold: IOU threshold
23
- Returns:
24
- Rendered image
25
- """
26
- model = YOLO(model_path)
27
- model.overrides['conf'] = conf_threshold
28
- model.overrides['iou']= iou_threshold
29
- model.overrides['agnostic_nms'] = False # NMS class-agnostic
30
- model.overrides['max_det'] = 999
31
- image = read_image(image)
32
- results = model.predict(image)
33
- render = render_result(model=model, image=image, result=results[0])
34
-
35
- return render
36
 
37
- def gr_postprocess(image):
38
- """
39
- Gradio postprocess function
40
- Args:
41
- image: Input image
42
- Returns:
43
- Processed image
44
- """
45
 
46
- # Convert the image to RGB
47
- image = image.convert('RGB')
 
 
 
48
 
49
- # Resize the image to the desired size
50
- image = image.resize((640, 480))
 
 
 
 
 
 
 
 
 
51
 
52
- # Convert the image to a numpy array
53
- image = np.array(image)
 
54
 
55
- return image
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
- inputs = [
58
- # Images
59
- gr.Examples(
60
- [
61
- 'samples/1.jpeg',
62
- 'samples/2.JPG',
63
- ],
64
- inputs={'postprocess': gr_postprocess(inputs)},
65
- ),
66
- gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
67
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
68
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
69
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
- outputs = gr.outputs.Image(type="filepath", label="Output Image")
72
- title = "YOLOobjectdetection: Efficient ObjectDetection"
73
 
74
- description = "🔍 YoloTableExtract is a powerful space that utilizes YOLOv8s for accurate table detection and extraction. Whether tables are bordered or borderless, this space can effectively identify and extract them from images. For further assistance and support related to documentation or data-related issues, feel free to contact [email protected]. If you find this space helpful, please show your appreciation by liking it. ❤️����🏼"
75
- examples = [['1.jpeg', "foduucom/object_detection", 640, 0.25, 0.45], ['2.JPG', "foduucom/object_detection", 640, 0.25, 0.45]]
76
- demo_app = gr.Interface(
77
- fn=yolov8_inference,
78
- inputs=inputs,
79
- outputs=outputs,
80
- title=title,
81
- description=description,
82
- examples=examples,
83
- cache_examples=True,
84
- theme='huggingface',
85
  )
86
- demo_app.launch(debug=True, enable_queue=True)
 
 
 
 
 
1
  import gradio as gr
2
+ import cv2
3
+ import requests
4
+ import os
 
5
 
6
+ from ultralytics import YOLO
7
 
8
+ file_urls = [
9
+ torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/object_detection/tree/main/samples/1.jpeg', '1.jpg'),
10
+ torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/object_detection/tree/main/samples/2.JPG', '2.jpg'),
11
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ ]
 
 
 
 
 
 
 
14
 
15
+ def download_file(url, save_name):
16
+ url = url
17
+ if not os.path.exists(save_name):
18
+ file = requests.get(url)
19
+ open(save_name, 'wb').write(file.content)
20
 
21
+ for i, url in enumerate(file_urls):
22
+ if 'mp4' in file_urls[i]:
23
+ download_file(
24
+ file_urls[i],
25
+ f"video.mp4"
26
+ )
27
+ else:
28
+ download_file(
29
+ file_urls[i],
30
+ f"image_{i}.jpg"
31
+ )
32
 
33
+ model = YOLO('best.pt')
34
+ path = [['image_0.jpg'], ['image_1.jpg']]
35
+ video_path = [['video.mp4']]
36
 
37
+ def show_preds_image(image_path):
38
+ image = cv2.imread(image_path)
39
+ outputs = model.predict(source=image_path)
40
+ results = outputs[0].cpu().numpy()
41
+ for i, det in enumerate(results.boxes.xyxy):
42
+ cv2.rectangle(
43
+ image,
44
+ (int(det[0]), int(det[1])),
45
+ (int(det[2]), int(det[3])),
46
+ color=(0, 0, 255),
47
+ thickness=2,
48
+ lineType=cv2.LINE_AA
49
+ )
50
+ return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
51
 
52
+ inputs_image = [
53
+ gr.components.Image(type="filepath", label="Input Image"),
54
+ ]
55
+ outputs_image = [
56
+ gr.components.Image(type="numpy", label="Output Image"),
 
 
 
 
 
 
 
57
  ]
58
+ interface_image = gr.Interface(
59
+ fn=show_preds_image,
60
+ inputs=inputs_image,
61
+ outputs=outputs_image,
62
+ title="Pothole detector app",
63
+ examples=path,
64
+ cache_examples=False,
65
+ )
66
+
67
+ def show_preds_video(video_path):
68
+ cap = cv2.VideoCapture(video_path)
69
+ while(cap.isOpened()):
70
+ ret, frame = cap.read()
71
+ if ret:
72
+ frame_copy = frame.copy()
73
+ outputs = model.predict(source=frame)
74
+ results = outputs[0].cpu().numpy()
75
+ for i, det in enumerate(results.boxes.xyxy):
76
+ cv2.rectangle(
77
+ frame_copy,
78
+ (int(det[0]), int(det[1])),
79
+ (int(det[2]), int(det[3])),
80
+ color=(0, 0, 255),
81
+ thickness=2,
82
+ lineType=cv2.LINE_AA
83
+ )
84
+ yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
85
 
86
+ inputs_video = [
87
+ gr.components.Video(type="filepath", label="Input Video"),
88
 
89
+ ]
90
+ outputs_video = [
91
+ gr.components.Image(type="numpy", label="Output Image"),
92
+ ]
93
+ interface_video = gr.Interface(
94
+ fn=show_preds_video,
95
+ inputs=inputs_video,
96
+ outputs=outputs_video,
97
+ title="Pothole detector",
98
+ examples=video_path,
99
+ cache_examples=False,
100
  )
101
+
102
+ gr.TabbedInterface(
103
+ [interface_image, interface_video],
104
+ tab_names=['Image inference', 'Video inference']
105
+ ).queue().launch()