Spaces:
Runtime error
Runtime error
Trent
commited on
Commit
·
53227c0
1
Parent(s):
82e684b
minor updates
Browse files
app.py
CHANGED
@@ -42,8 +42,8 @@ if menu == "Contributions & Evaluation":
|
|
42 |
| Model | [FullEvaluation](https://docs.google.com/spreadsheets/d/1vXJrIg38cEaKjOG5y4I4PQwAQFUmCkohbViJ9zj_Emg/edit#gid=1809754143) Average | 20Newsgroups Clustering | StackOverflow DupQuestions | Twitter SemEval2015 |
|
43 |
|-----------|---------------------------------------|-------|-------|-------|
|
44 |
| paraphrase-mpnet-base-v2 (previous SOTA) | 67.97 | 47.79 | 49.03 | 72.36 |
|
45 |
-
| **all_datasets_v3_roberta-large (400k steps)** | **70.22** | 50.12 | 52.18 | 75.28 |
|
46 |
-
| **all_datasets_v3_mpnet-base (440k steps)** | **70.01** | 50.22 | 52.24 | 76.27 |
|
47 |
''')
|
48 |
elif menu == "Sentence Similarity":
|
49 |
st.header('Sentence Similarity')
|
@@ -54,7 +54,7 @@ metric between our main sentence and the others.
|
|
54 |
|
55 |
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
|
56 |
''')
|
57 |
-
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)
|
58 |
|
59 |
anchor = st.text_input(
|
60 |
'Please enter here the main text you want to compare:',
|
@@ -93,8 +93,8 @@ elif menu == "Asymmetric QA":
|
|
93 |
**Instructions**: You can compare the Answer likeliness of a given Query with answer candidates of your choice. In the
|
94 |
background, we'll create an embedding for each answer, and then we'll use the cosine similarity function to calculate a
|
95 |
similarity metric between our query sentence and the others.
|
96 |
-
`mpnet_asymmetric_qa` model works best for hard-negative answers or distinguishing
|
97 |
-
applied for encoding questions and answers.
|
98 |
|
99 |
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
|
100 |
''')
|
|
|
42 |
| Model | [FullEvaluation](https://docs.google.com/spreadsheets/d/1vXJrIg38cEaKjOG5y4I4PQwAQFUmCkohbViJ9zj_Emg/edit#gid=1809754143) Average | 20Newsgroups Clustering | StackOverflow DupQuestions | Twitter SemEval2015 |
|
43 |
|-----------|---------------------------------------|-------|-------|-------|
|
44 |
| paraphrase-mpnet-base-v2 (previous SOTA) | 67.97 | 47.79 | 49.03 | 72.36 |
|
45 |
+
| **all_datasets_v3_roberta-large (400k steps)** | **70.22** | **50.12** | **52.18** | **75.28** |
|
46 |
+
| **all_datasets_v3_mpnet-base (440k steps)** | **70.01** | **50.22** | **52.24** | **76.27** |
|
47 |
''')
|
48 |
elif menu == "Sentence Similarity":
|
49 |
st.header('Sentence Similarity')
|
|
|
54 |
|
55 |
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
|
56 |
''')
|
57 |
+
select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID))
|
58 |
|
59 |
anchor = st.text_input(
|
60 |
'Please enter here the main text you want to compare:',
|
|
|
93 |
**Instructions**: You can compare the Answer likeliness of a given Query with answer candidates of your choice. In the
|
94 |
background, we'll create an embedding for each answer, and then we'll use the cosine similarity function to calculate a
|
95 |
similarity metric between our query sentence and the others.
|
96 |
+
`mpnet_asymmetric_qa` model works best for hard-negative answers or distinguishing answers that are actually questions
|
97 |
+
due to separate models applied for encoding questions and answers.
|
98 |
|
99 |
For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
|
100 |
''')
|