File size: 4,703 Bytes
6ae27e8
 
a41bdbc
 
5cd1ac6
6ae27e8
 
 
6e03e5d
5cd1ac6
6ae27e8
 
 
 
 
f7a5664
6ae27e8
f7a5664
 
 
 
6ae27e8
 
 
6e03e5d
0be3a1a
6e03e5d
 
 
6ae27e8
6e03e5d
 
 
 
6ae27e8
6e03e5d
6ae27e8
31f3439
6e03e5d
6ae27e8
6e03e5d
6ae27e8
6e03e5d
5cd1ac6
6e03e5d
a41bdbc
f7a5664
6e03e5d
 
 
6ae27e8
6e03e5d
 
 
31f3439
5cd1ac6
f7a5664
 
 
 
 
 
 
 
5cd1ac6
 
 
 
f7a5664
5cd1ac6
 
 
 
 
 
 
 
 
f7a5664
5cd1ac6
 
 
 
 
 
 
 
 
f7a5664
5cd1ac6
 
 
 
 
 
 
 
 
6e03e5d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import streamlit as st
import pandas as pd

from backend import inference
from backend.config import MODELS_ID, QA_MODELS_ID

st.title('Demo using Flax-Sentence-Tranformers')

st.sidebar.title('Tasks')
menu = st.sidebar.radio("", options=["Sentence Similarity", "Asymmetric QA", "Search", "Clustering"], index=0)

st.markdown('''

Hi! This is the demo for the [flax sentence embeddings](https://huggingface.co/flax-sentence-embeddings) created for the **Flax/JAX community week 🤗**. We are going to use three flax-sentence-embeddings models: a **distilroberta base**, a **mpnet base** and a **minilm-l6**. All were trained on all the dataset of the 1B+ train corpus with the v3 setup.

''')

if menu == "Sentence Similarity":
    st.header('Sentence Similarity')
    st.markdown('''
**Instructions**: You can compare the similarity of a main text with other texts of your choice. In the background, we'll create an embedding for each text, and then we'll use the cosine similarity function to calculate a similarity metric between our main sentence and the others.

For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
''')
    select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])

    anchor = st.text_input(
        'Please enter here the main text you want to compare:'
    )

    n_texts = st.number_input(
        f'''How many texts you want to compare with: '{anchor}'?''',
        value=2,
        min_value=2)

    inputs = []

    for i in range(int(n_texts)):
        input = st.text_input(f'Text {i + 1}:')

        inputs.append(input)

    if st.button('Tell me the similarity.'):
        results = {model: inference.text_similarity(anchor, inputs, model, MODELS_ID) for model in select_models}
        df_results = {model: results[model] for model in results}

        index = [f"{idx + 1}:{input[:min(15, len(input))]}..." for idx, input in enumerate(inputs)]
        df_total = pd.DataFrame(index=index)
        for key, value in df_results.items():
            df_total[key] = list(value['score'].values)

        st.write('Here are the results for selected models:')
        st.write(df_total)
        st.write('Visualize the results of each model:')
        st.line_chart(df_total)
elif menu == "Asymmetric QA":
    st.header('Asymmetric QA')
    st.markdown('''
**Instructions**: You can compare the Answer likeliness of a given Query with answer candidates of your choice. In the background, we'll create an embedding for each answers, and then we'll use the cosine similarity function to calculate a similarity metric between our query sentence and the others.
`mpnet_asymmetric_qa` model works best for hard negative answers or distinguishing similar queries due to separate models applied for encoding questions and answers.

For more cool information on sentence embeddings, see the [sBert project](https://www.sbert.net/examples/applications/computing-embeddings/README.html).
''')

    select_models = st.multiselect("Choose models", options=list(QA_MODELS_ID), default=list(QA_MODELS_ID)[0])

    anchor = st.text_input(
        'Please enter here the query you want to compare with given answers:',
        value="What is the weather in Paris?"
    )

    n_texts = st.number_input(
        f'''How many answers you want to compare with: '{anchor}'?''',
        value=3,
        min_value=2)

    inputs = []

    defaults = ["It is raining in Paris right now with 70 F temperature.", "What is the weather in Berlin?", "I have 3 brothers."]
    for i in range(int(n_texts)):
        input = st.text_input(f'Answer {i + 1}:', value=defaults[i] if i < len(defaults) else "")

        inputs.append(input)

    if st.button('Tell me Answer likeliness.'):
        results = {model: inference.text_similarity(anchor, inputs, model, QA_MODELS_ID) for model in select_models}
        df_results = {model: results[model] for model in results}

        index = [f"{idx + 1}:{input[:min(15, len(input))]}..." for idx, input in enumerate(inputs)]
        df_total = pd.DataFrame(index=index)
        for key, value in df_results.items():
            df_total[key] = list(value['score'].values)

        st.write('Here are the results for selected models:')
        st.write(df_total)
        st.write('Visualize the results of each model:')
        st.line_chart(df_total)

elif menu == "Search":
    select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])

elif menu == "Clustering":
    select_models = st.multiselect("Choose models", options=list(MODELS_ID), default=list(MODELS_ID)[0])