File size: 1,846 Bytes
8d9306e
 
 
 
 
 
241d776
8d9306e
f884ea7
 
0514a3d
 
9711ed9
 
f884ea7
 
 
fd6cb9f
 
 
8d9306e
d28411b
8d9306e
 
 
 
f705683
8d9306e
f705683
 
9a6a97f
f705683
8d9306e
3568832
9a6a97f
8d9306e
f705683
 
f4148f7
8d9306e
 
 
 
686f21e
8d9306e
d28411b
9a6a97f
76136cc
 
 
 
8d9306e
686f21e
310a439
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import streamlit as st
from PIL import Image
import numpy as np


# Designing the interface
st.title("🖼️ French Image Caption App")

st.markdown(
    """
    An image caption model [ViT-GPT2](https://huggingface.co/flax-community/vit-gpt2/tree/main) by combining the ViT model and a French GPT2 model.
    [Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).]\n
    The pretained weights of both models are loaded, with a set of randomly initialized cross-attention weigths.
    The model is trained on 65000 images from the COCO dataset for about 1500 steps, with the original english cpationis are translated to french for training purpose.
    """
)

#image = Image.open('samples/val_000000039769.jpg')
#show = st.image(image, use_column_width=True)
#show.image(image, 'Preloaded Image', use_column_width=True)

with st.spinner('Loading and compiling ViT-GPT2 model ...'):

    from model import *
    st.sidebar.write(f'Vit-GPT2 model loaded :)')

st.sidebar.title("Select a sample image")

sample_name = st.sidebar.selectbox(
    "Please Choose the Model",
    sample_fns
)

sample_name = f"COCO_val2014_{sample_name.replace('.jpg', '').zfill(12)}.jpg"
sample_path = os.path.join(sample_dir, sample_name)

image = Image.open(sample_path)
show = st.image(image, use_column_width=True)
show.image(image, '\n\nSelected Image', use_column_width=True)

# For newline
st.sidebar.write('\n')

with st.spinner('Generating image caption ...'):

    caption = predict(image)
    image.close()
    caption_en = translator.translate(caption, src='fr', dest='en')
    st.header('Prediction:')
    st.subheader(f'{caption}\n')
    st.subheader(f'English Translation: {caption_en}\n')

st.sidebar.header("ViT-GPT2 predicts:")
st.sidebar.write(f"{caption}", '\n')