Spaces:
Runtime error
Runtime error
File size: 4,374 Bytes
2d78164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
""" Modified from https://huggingface.co/spaces/flax-community/gpt2-indonesian/tree/main """
import json
import requests
from mtranslate import translate
from prompts import PROMPT_LIST
import streamlit as st
import random
description = """
## Overview
* **Overall Result:** So Fluent in Mongolian
* **Data:** [mC4-bn](https://huggingface.co/datasets/mc4)
* **Train Steps:** 250k steps
* **Contributors:** M Saiful Bari,Khalid Saifullah,Ibrahim Musa, Tasmiah Tahsin Mayeesha, Ritobrata Ghosh
* **link** [[🤗 huggingface](https://huggingface.co/flax-community/gpt2-bengali/)]
"""
headers = {}
MODELS = {
"GPT-2 Bengali": {
"url": "https://api-inference.huggingface.co/models/flax-community/gpt2-bengali"
},
"GPT-2 Finetuned(On Bengali Songs)": {
"url": "https://api-inference.huggingface.co/models/khalidsaifullaah/bengali-lyricist-gpt2"
},
}
def query(payload, model_name):
data = json.dumps(payload)
print("model url:", MODELS[model_name]["url"])
response = requests.request("POST", MODELS[model_name]["url"], headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
def process(text: str,
model_name: str,
max_len: int,
temp: float,
top_k: int,
top_p: float):
payload = {
"inputs": text,
"parameters": {
"max_new_tokens": max_len,
"top_k": top_k,
"top_p": top_p,
"temperature": temp,
"repetition_penalty": 2.0,
},
"options": {
"use_cache": True,
}
}
return query(payload, model_name)
st.set_page_config(page_title="Bengali GPT-2 Demo")
st.title("Bengali GPT-2")
st.sidebar.subheader("Configurable parameters")
max_len = st.sidebar.number_input(
"Maximum length",
value=30,
help="The maximum length of the sequence to be generated."
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.1,
max_value=100.0,
help="The value used to module the next token probabilities."
)
top_k = st.sidebar.number_input(
"Top k",
value=10,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)
top_p = st.sidebar.number_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
)
do_sample = st.sidebar.selectbox('Sampling?', (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.")
st.markdown(
"""Bengali GPT-2 demo. Part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/). Also features a finetuned version on bengali song lyrics."""
)
st.write(description)
model_name = st.selectbox('Model',(['GPT-2 Bengali', 'GPT-2 Finetuned(On Bengali Songs)']))
ALL_PROMPTS = list(PROMPT_LIST.keys())+["Custom"]
prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS)-1)
if prompt == "Custom":
prompt_box = "Enter your text here"
else:
prompt_box = random.choice(PROMPT_LIST[prompt])
text = st.text_area("Enter text", prompt_box)
if st.button("Run"):
with st.spinner(text="Getting results..."):
st.subheader("Result")
print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
result = process(text=text,
model_name=model_name,
max_len=int(max_len),
temp=temp,
top_k=int(top_k),
top_p=float(top_p))
print("result:", result)
if "error" in result:
if type(result["error"]) is str:
st.write(f'{result["error"]}.', end=" ")
if "estimated_time" in result:
st.write(f'Please try it again in about {result["estimated_time"]:.0f} seconds')
else:
if type(result["error"]) is list:
for error in result["error"]:
st.write(f'{error}')
else:
result = result[0]["generated_text"]
st.write(result.replace("\n", " \n"))
st.text("English translation")
st.write(translate(result, "en", "bn").replace("\n", " \n"))
|