File size: 1,847 Bytes
e98fee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import streamlit as st
import transformers
from transformers import (
    GPT2Config,
    GPT2Tokenizer)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2",pad_token='<|endoftext|>') 
from model_file import FlaxGPT2ForMultipleChoice
import jax
import jax.numpy as jnp

st.title('GPT2 for common sense reasoning')
st.write('Multiple Choice Question Answering using CosmosQA Dataset')

context=st.text_area('Context',height=25)

#context = st.text_input('Context :')





question=st.text_input('Question')


buff, col, buff2 = st.beta_columns([5,1,2])
choice_a=buff.text_input('choice 0')
choice_b=buff.text_input('choice 1')
choice_c=buff.text_input('choice 2')
choice_d=buff.text_input('choice 3')

a={}
def preprocess(context,question,choice_a,choice_b,choice_c,choice_d):
    a['context&question']=context+question
    a['first_sentence']=[a['context&question'],a['context&question'],a['context&question'],a['context&question']]
    a['second_sentence']=choice_a,choice_b,choice_c,choice_d
    return a

preprocessed_data=preprocess(context,question,choice_a,choice_b,choice_c,choice_d)

def tokenize(examples):
    b=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,return_tensors='jax')
    return b

tokenized_data=tokenize(preprocessed_data)


model = FlaxGPT2ForMultipleChoice.from_pretrained("flax-community/gpt2-Cosmos",input_shape=(1,4,1))

input_id=jnp.array(tokenized_data['input_ids'])
att_mask=jnp.array(tokenized_data['attention_mask'])

input_id=input_id.reshape(1,4,-1)
att_mask=att_mask.reshape(1,4,-1)

if st.button("Run"):
    with st.spinner(text="Getting results..."):
        outputs=model(input_id,att_mask)
        final_output=jnp.argmax(outputs,axis=-1)
        #output=jax.device_get(final_output).item()
        st.success(f"The answer is choice {final_output}")