aps's picture
Set eval mod
aa4fb95
raw
history blame
9.26 kB
from html import escape
import re
import streamlit as st
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPModel, FlavaModel, FlavaProcessor
from st_clickable_images import clickable_images
MODEL_NAMES = ["flava-full", "vit-base-patch32", "vit-base-patch16", "vit-large-patch14", "vit-large-patch14-336"]
@st.cache(allow_output_mutation=True)
def load():
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
models = {}
processors = {}
embeddings = {}
for name in MODEL_NAMES:
if "flava" not in name:
model = CLIPModel
processor = CLIPProcessor
prefix = "openai/clip-"
else:
model = FlavaModel
processor = FlavaProcessor
prefix = "facebook/"
models[name] = model.from_pretrained(f"{prefix}{name}")
models[name].eval()
processors[name] = processor.from_pretrained(f"{prefix}{name}")
embeddings[name] = {
0: np.load(f"embeddings-{name}.npy"),
1: np.load(f"embeddings2-{name}.npy"),
}
for k in [0, 1]:
embeddings[name][k] = embeddings[name][k] / np.linalg.norm(
embeddings[name][k], axis=1, keepdims=True
)
return models, processors, df, embeddings
models, processors, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def compute_text_embeddings(list_of_strings, name):
inputs = processors[name](text=list_of_strings, return_tensors="pt", padding=True)
result = models[name].get_text_features(**inputs)
if "flava" in name:
result = result[:, 0, :]
result = result.detach().numpy()
return result / np.linalg.norm(result, axis=1, keepdims=True)
def image_search(query, corpus, name, n_results=24):
positive_embeddings = None
def concatenate_embeddings(e1, e2):
if e1 is None:
return e2
else:
return np.concatenate((e1, e2), axis=0)
splitted_query = query.split("EXCLUDING ")
dot_product = 0
k = 0 if corpus == "Unsplash" else 1
if len(splitted_query[0]) > 0:
positive_queries = splitted_query[0].split(";")
for positive_query in positive_queries:
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
if match:
corpus2, idx, remainder = match.groups()
idx, remainder = int(idx), remainder.strip()
k2 = 0 if corpus2 == "Unsplash" else 1
positive_embeddings = concatenate_embeddings(
positive_embeddings, embeddings[name][k2][idx : idx + 1, :]
)
if len(remainder) > 0:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([remainder], name)
)
else:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([positive_query], name)
)
dot_product = embeddings[name][k] @ positive_embeddings.T
dot_product = dot_product - np.median(dot_product, axis=0)
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
dot_product = np.min(dot_product, axis=1)
if len(splitted_query) > 1:
negative_queries = (" ".join(splitted_query[1:])).split(";")
negative_embeddings = compute_text_embeddings(negative_queries, name)
dot_product2 = embeddings[name][k] @ negative_embeddings.T
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
return [
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
i,
)
for i in results
]
description = """
# FLAVA Semantic Image-Text Search
"""
instruction= """
**Enter your query and hit enter**
"""
credit = """
*Built with FAIR's [FLAVA](https://arxiv.org/abs/2112.04482) models, πŸ€— Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
*Forked and inspired from a similar app available [here](https://huggingface.co/spaces/vivien/clip/)*
"""
options = """
## Compare
Check results for a single model or compare two models by using the dropdown below:
"""
howto = """
## Advanced Use
- Click on an image to use it as a query and find similar images
- Several queries, including one based on an image, can be combined (use "**;**" as a separator).
- Try "sunset at beach; small children".
- If the input includes "**EXCLUDING**", text following it will be used as a negative query.
- Try "a busy city street with dogs" and "a busy city street EXCLUDING dogs".
"""
div_style = {
"display": "flex",
"justify-content": "center",
"flex-wrap": "wrap",
}
def main():
st.markdown(
"""
<style>
.block-container{
max-width: 1200px;
}
div.row-widget.stRadio > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
.row-widget {
margin-top: -25px;
}
section>div:first-child {
padding-top: 30px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
st.sidebar.markdown(options)
mode = st.sidebar.selectbox(
"", ["Results for FLAVA full", "Comparison of 2 models"], index=0
)
st.sidebar.markdown(howto)
st.sidebar.markdown(credit)
_, c, _ = st.columns((1, 3, 1))
c.markdown(instruction)
if "query" in st.session_state:
query = c.text_input("", value=st.session_state["query"])
else:
query = c.text_input("", value="a busy city with tall buildings")
corpus = st.radio("", ["Unsplash", "Movies"])
models_dict = {
"FLAVA": "flava-full",
"ViT-B/32 (quickest)": "vit-base-patch32",
"ViT-B/16 (quick)": "vit-base-patch16",
"ViT-L/14 (slow)": "vit-large-patch14",
"ViT-L/14@336px (slowest)": "vit-large-patch14-336",
}
if "Comparison" in mode:
c1, c2 = st.columns((1, 1))
selection1 = c1.selectbox("", models_dict.keys(), index=0)
selection2 = c2.selectbox("", models_dict.keys(), index=3)
name1 = models_dict[selection1]
name2 = models_dict[selection2]
else:
name1 = MODEL_NAMES[0]
if len(query) > 0:
results1 = image_search(query, corpus, name1)
if "Comparison" in mode:
with c1:
clicked1 = clickable_images(
[result[0] for result in results1],
titles=[result[1] for result in results1],
div_style=div_style,
img_style={"margin": "2px", "height": "150px"},
key=query + corpus + name1 + "1",
)
results2 = image_search(query, corpus, name2)
with c2:
clicked2 = clickable_images(
[result[0] for result in results2],
titles=[result[1] for result in results2],
div_style=div_style,
img_style={"margin": "2px", "height": "150px"},
key=query + corpus + name2 + "2",
)
else:
clicked1 = clickable_images(
[result[0] for result in results1],
titles=[result[1] for result in results1],
div_style=div_style,
img_style={"margin": "2px", "height": "200px"},
key=query + corpus + name1 + "1",
)
clicked2 = -1
if clicked2 >= 0 or clicked1 >= 0:
change_query = False
if "last_clicked" not in st.session_state:
change_query = True
else:
if max(clicked2, clicked1) != st.session_state["last_clicked"]:
change_query = True
if change_query:
if clicked1 >= 0:
st.session_state["query"] = f"[{corpus}:{results1[clicked1][2]}]"
elif clicked2 >= 0:
st.session_state["query"] = f"[{corpus}:{results2[clicked2][2]}]"
st.experimental_rerun()
if __name__ == "__main__":
main()