File size: 9,445 Bytes
73d70e7
 
e733aa9
73d70e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa4fb95
73d70e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e733aa9
 
73d70e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b014efa
 
 
73d70e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b014efa
73d70e7
b014efa
73d70e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b014efa
73d70e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from html import escape
import re
import torch
import streamlit as st
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPModel, FlavaModel, FlavaProcessor
from st_clickable_images import clickable_images

MODEL_NAMES = ["flava-full", "vit-base-patch32", "vit-base-patch16", "vit-large-patch14", "vit-large-patch14-336"]


@st.cache(allow_output_mutation=True)
def load():
    df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
    models = {}
    processors = {}
    embeddings = {}
    for name in MODEL_NAMES:
        if "flava" not in name:
            model = CLIPModel
            processor = CLIPProcessor
            prefix = "openai/clip-"
        else:
            model = FlavaModel
            processor = FlavaProcessor
            prefix = "facebook/"
        models[name] = model.from_pretrained(f"{prefix}{name}")
        models[name].eval()
        processors[name] = processor.from_pretrained(f"{prefix}{name}")
        embeddings[name] = {
            0: np.load(f"embeddings-{name}.npy"),
            1: np.load(f"embeddings2-{name}.npy"),
        }
        for k in [0, 1]:
            embeddings[name][k] = embeddings[name][k] / np.linalg.norm(
                embeddings[name][k], axis=1, keepdims=True
            )
    return models, processors, df, embeddings


models, processors, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}


def compute_text_embeddings(list_of_strings, name):
    inputs = processors[name](text=list_of_strings, return_tensors="pt", padding=True)
    with torch.no_grad():
        result = models[name].get_text_features(**inputs)
    if "flava" in name:
        result = result[:, 0, :]
    result = result.detach().numpy()
    return result / np.linalg.norm(result, axis=1, keepdims=True)


def image_search(query, corpus, name, n_results=24):
    positive_embeddings = None

    def concatenate_embeddings(e1, e2):
        if e1 is None:
            return e2
        else:
            return np.concatenate((e1, e2), axis=0)

    splitted_query = query.split("EXCLUDING ")
    dot_product = 0
    k = 0 if corpus == "Unsplash" else 1
    if len(splitted_query[0]) > 0:
        positive_queries = splitted_query[0].split(";")
        for positive_query in positive_queries:
            match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
            if match:
                corpus2, idx, remainder = match.groups()
                idx, remainder = int(idx), remainder.strip()
                k2 = 0 if corpus2 == "Unsplash" else 1
                positive_embeddings = concatenate_embeddings(
                    positive_embeddings, embeddings[name][k2][idx : idx + 1, :]
                )
                if len(remainder) > 0:
                    positive_embeddings = concatenate_embeddings(
                        positive_embeddings, compute_text_embeddings([remainder], name)
                    )
            else:
                positive_embeddings = concatenate_embeddings(
                    positive_embeddings, compute_text_embeddings([positive_query], name)
                )
        dot_product = embeddings[name][k] @ positive_embeddings.T
        dot_product = dot_product - np.median(dot_product, axis=0)
        dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
        dot_product = np.min(dot_product, axis=1)

    if len(splitted_query) > 1:
        negative_queries = (" ".join(splitted_query[1:])).split(";")
        negative_embeddings = compute_text_embeddings(negative_queries, name)
        dot_product2 = embeddings[name][k] @ negative_embeddings.T
        dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
        dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
        dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)

    results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
    return [
        (
            df[k].iloc[i]["path"],
            df[k].iloc[i]["tooltip"] + source[k],
            i,
        )
        for i in results
    ]


description = """
# FLAVA Semantic Image-Text Search
"""
instruction=  """
### **Enter your query and hit enter**

**Things to try:** compare with other models or search for "a field in country side EXCLUDING green"
"""

credit = """
*Built with FAIR's [FLAVA](https://arxiv.org/abs/2112.04482) models, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*

*Forked and inspired from a similar app available [here](https://huggingface.co/spaces/vivien/clip/)*
"""

options = """
## Compare
Check results for a single model or compare two models by using the dropdown below:
"""

howto = """
## Advanced Use
- Click on an image to use it as a query and find similar images
- Several queries, including one based on an image, can be combined (use "**;**" as a separator). 
    - Try "a person walking on a grass field; red flowers".
- If the input includes "**EXCLUDING**", text following it will be used as a negative query. 
    - Try "a field in country side which is green" and "a field in countryside EXCLUDING green".
"""

div_style = {
    "display": "flex",
    "justify-content": "center",
    "flex-wrap": "wrap",
}


def main():
    st.markdown(
        """
              <style>
              .block-container{
                max-width: 1200px;
              }
              div.row-widget.stRadio > div{
                flex-direction:row;
                display: flex;
                justify-content: center;
              }
              div.row-widget.stRadio > div > label{
                margin-left: 5px;
                margin-right: 5px;
              }
              .row-widget {
                margin-top: -25px;
              }
              section>div:first-child {
                padding-top: 30px;
              }
              div.reportview-container > section:first-child{
                max-width: 320px;
              }
              #MainMenu {
                visibility: hidden;
              }
              footer {
                visibility: hidden;
              }
              </style>""",
        unsafe_allow_html=True,
    )

    st.sidebar.markdown(description)
    st.sidebar.markdown(options)
    mode = st.sidebar.selectbox(
        "", ["Results for FLAVA full", "Comparison of 2 models"], index=0
    )
    st.sidebar.markdown(howto)
    st.sidebar.markdown(credit)
    _, c, _ = st.columns((1, 3, 1))
    c.markdown(instruction)
    if "query" in st.session_state:
        query = c.text_input("", value=st.session_state["query"])
    else:
        query = c.text_input("", value="a field in the countryside which is green")
    corpus = st.radio("", ["Unsplash", "Movies"])

    models_dict = {
        "FLAVA": "flava-full",
        "ViT-B/32 (quickest)": "vit-base-patch32",
        "ViT-B/16 (quick)": "vit-base-patch16",
        "ViT-L/14 (slow)": "vit-large-patch14",
        "ViT-L/14@336px (slowest)": "vit-large-patch14-336",
    }

    if "Comparison" in mode:
        c1, c2 = st.columns((1, 1))
        selection1 = c1.selectbox("", models_dict.keys(), index=0)
        selection2 = c2.selectbox("", models_dict.keys(), index=3)
        name1 = models_dict[selection1]
        name2 = models_dict[selection2]
    else:
        name1 = MODEL_NAMES[0]

    if len(query) > 0:
        results1 = image_search(query, corpus, name1)
        if "Comparison" in mode:
            with c1:
                clicked1 = clickable_images(
                    [result[0] for result in results1],
                    titles=[result[1] for result in results1],
                    div_style=div_style,
                    img_style={"margin": "2px", "height": "150px"},
                    key=query + corpus + name1 + "1",
                )
            results2 = image_search(query, corpus, name2)
            with c2:
                clicked2 = clickable_images(
                    [result[0] for result in results2],
                    titles=[result[1] for result in results2],
                    div_style=div_style,
                    img_style={"margin": "2px", "height": "150px"},
                    key=query + corpus + name2 + "2",
                )
        else:
            clicked1 = clickable_images(
                [result[0] for result in results1],
                titles=[result[1] for result in results1],
                div_style=div_style,
                img_style={"margin": "2px", "height": "200px"},
                key=query + corpus + name1 + "1",
            )
            clicked2 = -1

        if clicked2 >= 0 or clicked1 >= 0:
            change_query = False
            if "last_clicked" not in st.session_state:
                change_query = True
            else:
                if max(clicked2, clicked1) != st.session_state["last_clicked"]:
                    change_query = True
            if change_query:
                if clicked1 >= 0:
                    st.session_state["query"] = f"[{corpus}:{results1[clicked1][2]}]"
                elif clicked2 >= 0:
                    st.session_state["query"] = f"[{corpus}:{results2[clicked2][2]}]"
                st.experimental_rerun()


if __name__ == "__main__":
    main()