Spaces:
Runtime error
Runtime error
File size: 9,445 Bytes
73d70e7 e733aa9 73d70e7 aa4fb95 73d70e7 e733aa9 73d70e7 b014efa 73d70e7 b014efa 73d70e7 b014efa 73d70e7 b014efa 73d70e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
from html import escape
import re
import torch
import streamlit as st
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPModel, FlavaModel, FlavaProcessor
from st_clickable_images import clickable_images
MODEL_NAMES = ["flava-full", "vit-base-patch32", "vit-base-patch16", "vit-large-patch14", "vit-large-patch14-336"]
@st.cache(allow_output_mutation=True)
def load():
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
models = {}
processors = {}
embeddings = {}
for name in MODEL_NAMES:
if "flava" not in name:
model = CLIPModel
processor = CLIPProcessor
prefix = "openai/clip-"
else:
model = FlavaModel
processor = FlavaProcessor
prefix = "facebook/"
models[name] = model.from_pretrained(f"{prefix}{name}")
models[name].eval()
processors[name] = processor.from_pretrained(f"{prefix}{name}")
embeddings[name] = {
0: np.load(f"embeddings-{name}.npy"),
1: np.load(f"embeddings2-{name}.npy"),
}
for k in [0, 1]:
embeddings[name][k] = embeddings[name][k] / np.linalg.norm(
embeddings[name][k], axis=1, keepdims=True
)
return models, processors, df, embeddings
models, processors, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def compute_text_embeddings(list_of_strings, name):
inputs = processors[name](text=list_of_strings, return_tensors="pt", padding=True)
with torch.no_grad():
result = models[name].get_text_features(**inputs)
if "flava" in name:
result = result[:, 0, :]
result = result.detach().numpy()
return result / np.linalg.norm(result, axis=1, keepdims=True)
def image_search(query, corpus, name, n_results=24):
positive_embeddings = None
def concatenate_embeddings(e1, e2):
if e1 is None:
return e2
else:
return np.concatenate((e1, e2), axis=0)
splitted_query = query.split("EXCLUDING ")
dot_product = 0
k = 0 if corpus == "Unsplash" else 1
if len(splitted_query[0]) > 0:
positive_queries = splitted_query[0].split(";")
for positive_query in positive_queries:
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
if match:
corpus2, idx, remainder = match.groups()
idx, remainder = int(idx), remainder.strip()
k2 = 0 if corpus2 == "Unsplash" else 1
positive_embeddings = concatenate_embeddings(
positive_embeddings, embeddings[name][k2][idx : idx + 1, :]
)
if len(remainder) > 0:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([remainder], name)
)
else:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([positive_query], name)
)
dot_product = embeddings[name][k] @ positive_embeddings.T
dot_product = dot_product - np.median(dot_product, axis=0)
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
dot_product = np.min(dot_product, axis=1)
if len(splitted_query) > 1:
negative_queries = (" ".join(splitted_query[1:])).split(";")
negative_embeddings = compute_text_embeddings(negative_queries, name)
dot_product2 = embeddings[name][k] @ negative_embeddings.T
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
return [
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
i,
)
for i in results
]
description = """
# FLAVA Semantic Image-Text Search
"""
instruction= """
### **Enter your query and hit enter**
**Things to try:** compare with other models or search for "a field in country side EXCLUDING green"
"""
credit = """
*Built with FAIR's [FLAVA](https://arxiv.org/abs/2112.04482) models, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
*Forked and inspired from a similar app available [here](https://huggingface.co/spaces/vivien/clip/)*
"""
options = """
## Compare
Check results for a single model or compare two models by using the dropdown below:
"""
howto = """
## Advanced Use
- Click on an image to use it as a query and find similar images
- Several queries, including one based on an image, can be combined (use "**;**" as a separator).
- Try "a person walking on a grass field; red flowers".
- If the input includes "**EXCLUDING**", text following it will be used as a negative query.
- Try "a field in country side which is green" and "a field in countryside EXCLUDING green".
"""
div_style = {
"display": "flex",
"justify-content": "center",
"flex-wrap": "wrap",
}
def main():
st.markdown(
"""
<style>
.block-container{
max-width: 1200px;
}
div.row-widget.stRadio > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
.row-widget {
margin-top: -25px;
}
section>div:first-child {
padding-top: 30px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
st.sidebar.markdown(options)
mode = st.sidebar.selectbox(
"", ["Results for FLAVA full", "Comparison of 2 models"], index=0
)
st.sidebar.markdown(howto)
st.sidebar.markdown(credit)
_, c, _ = st.columns((1, 3, 1))
c.markdown(instruction)
if "query" in st.session_state:
query = c.text_input("", value=st.session_state["query"])
else:
query = c.text_input("", value="a field in the countryside which is green")
corpus = st.radio("", ["Unsplash", "Movies"])
models_dict = {
"FLAVA": "flava-full",
"ViT-B/32 (quickest)": "vit-base-patch32",
"ViT-B/16 (quick)": "vit-base-patch16",
"ViT-L/14 (slow)": "vit-large-patch14",
"ViT-L/14@336px (slowest)": "vit-large-patch14-336",
}
if "Comparison" in mode:
c1, c2 = st.columns((1, 1))
selection1 = c1.selectbox("", models_dict.keys(), index=0)
selection2 = c2.selectbox("", models_dict.keys(), index=3)
name1 = models_dict[selection1]
name2 = models_dict[selection2]
else:
name1 = MODEL_NAMES[0]
if len(query) > 0:
results1 = image_search(query, corpus, name1)
if "Comparison" in mode:
with c1:
clicked1 = clickable_images(
[result[0] for result in results1],
titles=[result[1] for result in results1],
div_style=div_style,
img_style={"margin": "2px", "height": "150px"},
key=query + corpus + name1 + "1",
)
results2 = image_search(query, corpus, name2)
with c2:
clicked2 = clickable_images(
[result[0] for result in results2],
titles=[result[1] for result in results2],
div_style=div_style,
img_style={"margin": "2px", "height": "150px"},
key=query + corpus + name2 + "2",
)
else:
clicked1 = clickable_images(
[result[0] for result in results1],
titles=[result[1] for result in results1],
div_style=div_style,
img_style={"margin": "2px", "height": "200px"},
key=query + corpus + name1 + "1",
)
clicked2 = -1
if clicked2 >= 0 or clicked1 >= 0:
change_query = False
if "last_clicked" not in st.session_state:
change_query = True
else:
if max(clicked2, clicked1) != st.session_state["last_clicked"]:
change_query = True
if change_query:
if clicked1 >= 0:
st.session_state["query"] = f"[{corpus}:{results1[clicked1][2]}]"
elif clicked2 >= 0:
st.session_state["query"] = f"[{corpus}:{results2[clicked2][2]}]"
st.experimental_rerun()
if __name__ == "__main__":
main()
|