Spaces:
Runtime error
Runtime error
Update models/depth_normal_pipeline_clip.py
Browse files
models/depth_normal_pipeline_clip.py
CHANGED
|
@@ -79,6 +79,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
| 79 |
match_input_res:bool =True,
|
| 80 |
batch_size:int = 0,
|
| 81 |
domain: str = "indoor",
|
|
|
|
| 82 |
color_map: str="Spectral",
|
| 83 |
show_progress_bar:bool = True,
|
| 84 |
ensemble_kwargs: Dict = None,
|
|
@@ -147,6 +148,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
| 147 |
input_rgb=batched_image,
|
| 148 |
num_inference_steps=denoising_steps,
|
| 149 |
domain=domain,
|
|
|
|
| 150 |
show_pbar=show_progress_bar,
|
| 151 |
)
|
| 152 |
depth_pred_ls.append(depth_pred_raw.detach().clone())
|
|
@@ -230,6 +232,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
| 230 |
def single_infer(self,input_rgb:torch.Tensor,
|
| 231 |
num_inference_steps:int,
|
| 232 |
domain:str,
|
|
|
|
| 233 |
show_pbar:bool,):
|
| 234 |
|
| 235 |
device = input_rgb.device
|
|
@@ -242,6 +245,8 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
| 242 |
rgb_latent = self.encode_RGB(input_rgb)
|
| 243 |
|
| 244 |
# Initial depth map (Guassian noise)
|
|
|
|
|
|
|
| 245 |
geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
|
| 246 |
rgb_latent = rgb_latent.repeat(2,1,1,1)
|
| 247 |
|
|
|
|
| 79 |
match_input_res:bool =True,
|
| 80 |
batch_size:int = 0,
|
| 81 |
domain: str = "indoor",
|
| 82 |
+
seed: int = 0,
|
| 83 |
color_map: str="Spectral",
|
| 84 |
show_progress_bar:bool = True,
|
| 85 |
ensemble_kwargs: Dict = None,
|
|
|
|
| 148 |
input_rgb=batched_image,
|
| 149 |
num_inference_steps=denoising_steps,
|
| 150 |
domain=domain,
|
| 151 |
+
seed=seed,
|
| 152 |
show_pbar=show_progress_bar,
|
| 153 |
)
|
| 154 |
depth_pred_ls.append(depth_pred_raw.detach().clone())
|
|
|
|
| 232 |
def single_infer(self,input_rgb:torch.Tensor,
|
| 233 |
num_inference_steps:int,
|
| 234 |
domain:str,
|
| 235 |
+
seed: int,
|
| 236 |
show_pbar:bool,):
|
| 237 |
|
| 238 |
device = input_rgb.device
|
|
|
|
| 245 |
rgb_latent = self.encode_RGB(input_rgb)
|
| 246 |
|
| 247 |
# Initial depth map (Guassian noise)
|
| 248 |
+
if seed >= 0:
|
| 249 |
+
torch.manual_seed(0)
|
| 250 |
geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
|
| 251 |
rgb_latent = rgb_latent.repeat(2,1,1,1)
|
| 252 |
|