Spaces:
Runtime error
Runtime error
Create app2.py
Browse files
app2.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import sys
|
| 5 |
+
import git
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch as torch
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
from gradio_imageslider import ImageSlider
|
| 13 |
+
|
| 14 |
+
import spaces
|
| 15 |
+
|
| 16 |
+
import fire
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import os
|
| 20 |
+
import logging
|
| 21 |
+
|
| 22 |
+
import numpy as np
|
| 23 |
+
import torch
|
| 24 |
+
from PIL import Image
|
| 25 |
+
from tqdm.auto import tqdm
|
| 26 |
+
import glob
|
| 27 |
+
import json
|
| 28 |
+
import cv2
|
| 29 |
+
|
| 30 |
+
import sys
|
| 31 |
+
sys.path.append("../")
|
| 32 |
+
from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
|
| 33 |
+
from utils.seed_all import seed_all
|
| 34 |
+
import matplotlib.pyplot as plt
|
| 35 |
+
from dataloader.file_io import read_hdf5, align_normal, creat_uv_mesh
|
| 36 |
+
from utils.de_normalized import align_scale_shift
|
| 37 |
+
from utils.depth2normal import *
|
| 38 |
+
|
| 39 |
+
from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL
|
| 40 |
+
from models.unet_2d_condition import UNet2DConditionModel
|
| 41 |
+
|
| 42 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 43 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
| 44 |
+
import torchvision.transforms.functional as TF
|
| 45 |
+
from torchvision.transforms import InterpolationMode
|
| 46 |
+
|
| 47 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 48 |
+
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
import xformers
|
| 52 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 53 |
+
except:
|
| 54 |
+
pass # run without xformers
|
| 55 |
+
|
| 56 |
+
pipe = pipe.to(device)
|
| 57 |
+
#run_demo_server(pipe)
|
| 58 |
+
|
| 59 |
+
@spaces.GPU
|
| 60 |
+
def depth_normal(img,
|
| 61 |
+
denoising_steps,
|
| 62 |
+
ensemble_size,
|
| 63 |
+
processing_res,
|
| 64 |
+
guidance_scale,
|
| 65 |
+
domain):
|
| 66 |
+
|
| 67 |
+
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
| 68 |
+
pipe_out = pipe(
|
| 69 |
+
img,
|
| 70 |
+
denoising_steps=denoising_steps,
|
| 71 |
+
ensemble_size=ensemble_size,
|
| 72 |
+
processing_res=processing_res,
|
| 73 |
+
batch_size=0,
|
| 74 |
+
guidance_scale=guidance_scale,
|
| 75 |
+
domain=domain,
|
| 76 |
+
show_progress_bar=True,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
depth_colored = pipe_out.depth_colored
|
| 80 |
+
normal_colored = pipe_out.normal_colored
|
| 81 |
+
|
| 82 |
+
return depth_colored, normal_colored
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def run_demo():
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
| 90 |
+
button_secondary_background_fill="*neutral_100",
|
| 91 |
+
button_secondary_background_fill_hover="*neutral_200")
|
| 92 |
+
custom_css = '''#disp_image {
|
| 93 |
+
text-align: center; /* Horizontally center the content */
|
| 94 |
+
}'''
|
| 95 |
+
|
| 96 |
+
_TITLE = '''GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image'''
|
| 97 |
+
_DESCRIPTION = '''
|
| 98 |
+
<div>
|
| 99 |
+
Generate consistent depth and normal from single image. High quality and rich details.
|
| 100 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/fuxiao0719/GeoWizard/'><img src='https://img.shields.io/github/stars/fuxiao0719/GeoWizard?style=social' /></a>
|
| 101 |
+
</div>
|
| 102 |
+
'''
|
| 103 |
+
_GPU_ID = 0
|
| 104 |
+
|
| 105 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
| 106 |
+
with gr.Row():
|
| 107 |
+
with gr.Column(scale=1):
|
| 108 |
+
gr.Markdown('# ' + _TITLE)
|
| 109 |
+
gr.Markdown(_DESCRIPTION)
|
| 110 |
+
with gr.Row(variant='panel'):
|
| 111 |
+
with gr.Column(scale=1):
|
| 112 |
+
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image')
|
| 113 |
+
|
| 114 |
+
example_folder = os.path.join(os.path.dirname(__file__), "./files")
|
| 115 |
+
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
|
| 116 |
+
gr.Examples(
|
| 117 |
+
examples=example_fns,
|
| 118 |
+
inputs=[input_image],
|
| 119 |
+
# outputs=[input_image],
|
| 120 |
+
cache_examples=False,
|
| 121 |
+
label='Examples (click one of the images below to start)',
|
| 122 |
+
examples_per_page=30
|
| 123 |
+
)
|
| 124 |
+
with gr.Column(scale=1):
|
| 125 |
+
|
| 126 |
+
with gr.Accordion('Advanced options', open=True):
|
| 127 |
+
with gr.Column():
|
| 128 |
+
|
| 129 |
+
domain = gr.Radio(
|
| 130 |
+
[
|
| 131 |
+
("Outdoor", "outdoor"),
|
| 132 |
+
("Indoor", "indoor"),
|
| 133 |
+
("Object", "object"),
|
| 134 |
+
],
|
| 135 |
+
label="Data Type (Must Select One matches your image)",
|
| 136 |
+
value="indoor",
|
| 137 |
+
)
|
| 138 |
+
guidance_scale = gr.Slider(
|
| 139 |
+
label="Classifier Free Guidance Scale",
|
| 140 |
+
minimum=1,
|
| 141 |
+
maximum=5,
|
| 142 |
+
step=1,
|
| 143 |
+
value=3,
|
| 144 |
+
)
|
| 145 |
+
denoising_steps = gr.Slider(
|
| 146 |
+
label="Number of denoising steps (More stepes, better quality)",
|
| 147 |
+
minimum=1,
|
| 148 |
+
maximum=50,
|
| 149 |
+
step=1,
|
| 150 |
+
value=20,
|
| 151 |
+
)
|
| 152 |
+
ensemble_size = gr.Slider(
|
| 153 |
+
label="Ensemble size (1 will be enough. More steps, higher accuracy)",
|
| 154 |
+
minimum=1,
|
| 155 |
+
maximum=15,
|
| 156 |
+
step=1,
|
| 157 |
+
value=1,
|
| 158 |
+
)
|
| 159 |
+
processing_res = gr.Radio(
|
| 160 |
+
[
|
| 161 |
+
("Native", 0),
|
| 162 |
+
("Recommended", 768),
|
| 163 |
+
],
|
| 164 |
+
label="Processing resolution",
|
| 165 |
+
value=768,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
| 170 |
+
with gr.Row():
|
| 171 |
+
with gr.Column():
|
| 172 |
+
depth = gr.Image(interactive=False, show_label=False)
|
| 173 |
+
with gr.Column():
|
| 174 |
+
normal = gr.Image(interactive=False, show_label=False)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
run_btn.click(fn=depth_normal,
|
| 178 |
+
inputs=[input_image, denoising_steps,
|
| 179 |
+
ensemble_size,
|
| 180 |
+
processing_res,
|
| 181 |
+
guidance_scale,
|
| 182 |
+
domain],
|
| 183 |
+
outputs=[depth, normal]
|
| 184 |
+
)
|
| 185 |
+
demo.queue().launch(share=True, max_threads=80)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
if __name__ == '__main__':
|
| 189 |
+
fire.Fire(run_demo)
|
| 190 |
+
|