Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # A reimplemented version in public environments by Xiao Fu and Mu Hu | |
| import torch | |
| import numpy as np | |
| import torch.nn as nn | |
| def init_image_coor(height, width): | |
| x_row = np.arange(0, width) | |
| x = np.tile(x_row, (height, 1)) | |
| x = x[np.newaxis, :, :] | |
| x = x.astype(np.float32) | |
| x = torch.from_numpy(x.copy()).cuda() | |
| u_u0 = x - width/2.0 | |
| y_col = np.arange(0, height) # y_col = np.arange(0, height) | |
| y = np.tile(y_col, (width, 1)).T | |
| y = y[np.newaxis, :, :] | |
| y = y.astype(np.float32) | |
| y = torch.from_numpy(y.copy()).cuda() | |
| v_v0 = y - height/2.0 | |
| return u_u0, v_v0 | |
| def depth_to_xyz(depth, focal_length): | |
| b, c, h, w = depth.shape | |
| u_u0, v_v0 = init_image_coor(h, w) | |
| x = u_u0 * depth / focal_length | |
| y = v_v0 * depth / focal_length | |
| z = depth | |
| pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c] | |
| return pw | |
| def get_surface_normal(xyz, patch_size=3): | |
| # xyz: [1, h, w, 3] | |
| x, y, z = torch.unbind(xyz, dim=3) | |
| x = torch.unsqueeze(x, 0) | |
| y = torch.unsqueeze(y, 0) | |
| z = torch.unsqueeze(z, 0) | |
| xx = x * x | |
| yy = y * y | |
| zz = z * z | |
| xy = x * y | |
| xz = x * z | |
| yz = y * z | |
| patch_weight = torch.ones((1, 1, patch_size, patch_size), requires_grad=False).cuda() | |
| xx_patch = nn.functional.conv2d(xx, weight=patch_weight, padding=int(patch_size / 2)) | |
| yy_patch = nn.functional.conv2d(yy, weight=patch_weight, padding=int(patch_size / 2)) | |
| zz_patch = nn.functional.conv2d(zz, weight=patch_weight, padding=int(patch_size / 2)) | |
| xy_patch = nn.functional.conv2d(xy, weight=patch_weight, padding=int(patch_size / 2)) | |
| xz_patch = nn.functional.conv2d(xz, weight=patch_weight, padding=int(patch_size / 2)) | |
| yz_patch = nn.functional.conv2d(yz, weight=patch_weight, padding=int(patch_size / 2)) | |
| ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch], | |
| dim=4) | |
| ATA = torch.squeeze(ATA) | |
| ATA = torch.reshape(ATA, (ATA.size(0), ATA.size(1), 3, 3)) | |
| eps_identity = 1e-6 * torch.eye(3, device=ATA.device, dtype=ATA.dtype)[None, None, :, :].repeat([ATA.size(0), ATA.size(1), 1, 1]) | |
| ATA = ATA + eps_identity | |
| x_patch = nn.functional.conv2d(x, weight=patch_weight, padding=int(patch_size / 2)) | |
| y_patch = nn.functional.conv2d(y, weight=patch_weight, padding=int(patch_size / 2)) | |
| z_patch = nn.functional.conv2d(z, weight=patch_weight, padding=int(patch_size / 2)) | |
| AT1 = torch.stack([x_patch, y_patch, z_patch], dim=4) | |
| AT1 = torch.squeeze(AT1) | |
| AT1 = torch.unsqueeze(AT1, 3) | |
| patch_num = 4 | |
| patch_x = int(AT1.size(1) / patch_num) | |
| patch_y = int(AT1.size(0) / patch_num) | |
| n_img = torch.randn(AT1.shape).cuda() | |
| overlap = patch_size // 2 + 1 | |
| for x in range(int(patch_num)): | |
| for y in range(int(patch_num)): | |
| left_flg = 0 if x == 0 else 1 | |
| right_flg = 0 if x == patch_num -1 else 1 | |
| top_flg = 0 if y == 0 else 1 | |
| btm_flg = 0 if y == patch_num - 1 else 1 | |
| at1 = AT1[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap, | |
| x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap] | |
| ata = ATA[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap, | |
| x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap] | |
| n_img_tmp, _ = torch.solve(at1, ata) | |
| n_img_tmp_select = n_img_tmp[top_flg * overlap:patch_y + top_flg * overlap, left_flg * overlap:patch_x + left_flg * overlap, :, :] | |
| n_img[y * patch_y:y * patch_y + patch_y, x * patch_x:x * patch_x + patch_x, :, :] = n_img_tmp_select | |
| n_img_L2 = torch.sqrt(torch.sum(n_img ** 2, dim=2, keepdim=True)) | |
| n_img_norm = n_img / n_img_L2 | |
| # re-orient normals consistently | |
| orient_mask = torch.sum(torch.squeeze(n_img_norm) * torch.squeeze(xyz), dim=2) > 0 | |
| n_img_norm[orient_mask] *= -1 | |
| return n_img_norm | |
| def get_surface_normalv2(xyz, patch_size=3): | |
| """ | |
| xyz: xyz coordinates | |
| patch: [p1, p2, p3, | |
| p4, p5, p6, | |
| p7, p8, p9] | |
| surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)] | |
| return: normal [h, w, 3, b] | |
| """ | |
| b, h, w, c = xyz.shape | |
| half_patch = patch_size // 2 | |
| xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device) | |
| xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz | |
| # xyz_left_top = xyz_pad[:, :h, :w, :] # p1 | |
| # xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9 | |
| # xyz_left_bottom = xyz_pad[:, -h:, :w, :] # p7 | |
| # xyz_right_top = xyz_pad[:, :h, -w:, :] # p3 | |
| # xyz_cross1 = xyz_left_top - xyz_right_bottom # p1p9 | |
| # xyz_cross2 = xyz_left_bottom - xyz_right_top # p7p3 | |
| xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :] # p4 | |
| xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :] # p6 | |
| xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :] # p2 | |
| xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :] # p8 | |
| xyz_horizon = xyz_left - xyz_right # p4p6 | |
| xyz_vertical = xyz_top - xyz_bottom # p2p8 | |
| xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :] # p4 | |
| xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :] # p6 | |
| xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :] # p2 | |
| xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :] # p8 | |
| xyz_horizon_in = xyz_left_in - xyz_right_in # p4p6 | |
| xyz_vertical_in = xyz_top_in - xyz_bottom_in # p2p8 | |
| n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3) | |
| n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3) | |
| # re-orient normals consistently | |
| orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0 | |
| n_img_1[orient_mask] *= -1 | |
| orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0 | |
| n_img_2[orient_mask] *= -1 | |
| n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True)) | |
| n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8) | |
| n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True)) | |
| n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8) | |
| # average 2 norms | |
| n_img_aver = n_img1_norm + n_img2_norm | |
| n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True)) | |
| n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8) | |
| # re-orient normals consistently | |
| orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0 | |
| n_img_aver_norm[orient_mask] *= -1 | |
| n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0)) # [h, w, c, b] | |
| # a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze() | |
| # plt.imshow(np.abs(a), cmap='rainbow') | |
| # plt.show() | |
| return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0)) | |
| def surface_normal_from_depth(depth, focal_length, valid_mask=None): | |
| # para depth: depth map, [b, c, h, w] | |
| b, c, h, w = depth.shape | |
| focal_length = focal_length[:, None, None, None] | |
| depth_filter = nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1) | |
| depth_filter = nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1) | |
| xyz = depth_to_xyz(depth_filter, focal_length) | |
| sn_batch = [] | |
| for i in range(b): | |
| xyz_i = xyz[i, :][None, :, :, :] | |
| normal = get_surface_normalv2(xyz_i) | |
| sn_batch.append(normal) | |
| sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1)) # [b, c, h, w] | |
| mask_invalid = (~valid_mask).repeat(1, 3, 1, 1) | |
| sn_batch[mask_invalid] = 0.0 | |
| return sn_batch | |
| def vis_normal(normal): | |
| """ | |
| Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255] | |
| @para normal: surface normal, [h, w, 3], numpy.array | |
| """ | |
| n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True)) | |
| n_img_norm = normal / (n_img_L2 + 1e-8) | |
| normal_vis = n_img_norm * 127 | |
| normal_vis += 128 | |
| normal_vis = normal_vis.astype(np.uint8) | |
| return normal_vis | |
| def vis_normal2(normals): | |
| ''' | |
| Montage of normal maps. Vectors are unit length and backfaces thresholded. | |
| ''' | |
| x = normals[:, :, 0] # horizontal; pos right | |
| y = normals[:, :, 1] # depth; pos far | |
| z = normals[:, :, 2] # vertical; pos up | |
| backfacing = (z > 0) | |
| norm = np.sqrt(np.sum(normals**2, axis=2)) | |
| zero = (norm < 1e-5) | |
| x += 1.0; x *= 0.5 | |
| y += 1.0; y *= 0.5 | |
| z = np.abs(z) | |
| x[zero] = 0.0 | |
| y[zero] = 0.0 | |
| z[zero] = 0.0 | |
| normals[:, :, 0] = x # horizontal; pos right | |
| normals[:, :, 1] = y # depth; pos far | |
| normals[:, :, 2] = z # vertical; pos up | |
| return normals | |
| if __name__ == '__main__': | |
| import cv2, os | 
