Spaces:
Running
Running
| import spacy.displacy | |
| import streamlit as st | |
| from flair.models import SequenceTagger | |
| from flair.splitter import SegtokSentenceSplitter | |
| from colorhash import ColorHash | |
| # st.title("Flair NER Demo") | |
| st.set_page_config(layout="centered") | |
| # models to choose from | |
| model_map = { | |
| "find Entities (default)": "ner-large", | |
| "find Entities (18-class)": "ner-ontonotes-large", | |
| "find Parts-of-Speech": "pos-multi", | |
| } | |
| # Block 1: Users can select a model | |
| st.subheader("Select a model") | |
| selected_model_id = st.selectbox("This is a check box", | |
| model_map.keys(), | |
| label_visibility="collapsed", | |
| ) | |
| # Block 2: Users can input text | |
| st.subheader("Input your text here") | |
| input_text = st.text_area('Write or Paste Text Below', | |
| value="George was born in Washington.", | |
| height=128, | |
| max_chars=None, | |
| label_visibility="collapsed") | |
| def get_model(model_name): | |
| return SequenceTagger.load(model_map[model_name]) | |
| def get_html(html: str): | |
| WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>""" | |
| html = html.replace("\n", " ") | |
| return WRAPPER.format(html) | |
| def color_variant(hex_color, brightness_offset=1): | |
| """ takes a color like #87c95f and produces a lighter or darker variant | |
| taken from: https://chase-seibert.github.io/blog/2011/07/29/python-calculate-lighterdarker-rgb-colors.html | |
| """ | |
| if len(hex_color) != 7: | |
| raise Exception("Passed %s into color_variant(), needs to be in #87c95f format." % hex_color) | |
| rgb_hex = [hex_color[x:x + 2] for x in [1, 3, 5]] | |
| new_rgb_int = [int(hex_value, 16) + brightness_offset for hex_value in rgb_hex] | |
| new_rgb_int = [min([255, max([0, i])]) for i in new_rgb_int] # make sure new values are between 0 and 255 | |
| # hex() produces "0x88", we want just "88" | |
| return "#" + "".join([hex(i)[2:] for i in new_rgb_int]) | |
| # Block 3: Output is displayed | |
| button_clicked = st.button("**Click here** to tag the input text", key=None) | |
| if button_clicked: | |
| # get a sentence splitter and split text into sentences | |
| splitter = SegtokSentenceSplitter() | |
| sentences = splitter.split(input_text) | |
| # get the model and predict | |
| model = get_model(selected_model_id) | |
| model.predict(sentences) | |
| spacy_display = {"ents": [], "text": input_text, "title": None} | |
| predicted_labels = set() | |
| for sentence in sentences: | |
| for prediction in sentence.get_labels(): | |
| spacy_display["ents"].append( | |
| {"start": prediction.data_point.start_position + sentence.start_position, | |
| "end": prediction.data_point.end_position + sentence.start_position, | |
| "label": prediction.value}) | |
| predicted_labels.add(prediction.value) | |
| # create colors for each label | |
| colors = {} | |
| for label in predicted_labels: | |
| colors[label] = color_variant(ColorHash(label).hex, brightness_offset=85) | |
| # use displacy to render | |
| html = spacy.displacy.render(spacy_display, | |
| style="ent", | |
| minify=True, | |
| manual=True, | |
| options={ | |
| "colors": colors, | |
| }, | |
| ) | |
| style = "<style>mark.entity { display: inline-block }</style>" | |
| st.subheader("Found entities") | |
| st.write(f"{style}{get_html(html)}", unsafe_allow_html=True) | |