import os import queue from huggingface_hub import snapshot_download import numpy as np import wave import io import gc from typing import Callable # Download if not exists os.makedirs("checkpoints", exist_ok=True) snapshot_download(repo_id="fishaudio/openaudio-s1-mini", local_dir="./checkpoints/openaudio-s1-mini") print("All checkpoints downloaded") import html import os from argparse import ArgumentParser from pathlib import Path import gradio as gr import torch import torchaudio torchaudio.set_audio_backend("soundfile") from loguru import logger from fish_speech.i18n import i18n from fish_speech.inference_engine import TTSInferenceEngine from fish_speech.models.dac.inference import load_model as load_decoder_model from fish_speech.models.text2semantic.inference import launch_thread_safe_queue from tools.webui.inference import get_inference_wrapper from fish_speech.utils.schema import ServeTTSRequest # Make einx happy os.environ["EINX_FILTER_TRACEBACK"] = "false" HEADER_MD = """# OpenAudio S1 ## The demo in this space is OpenAudio S1, Please check [Fish Audio](https://fish.audio) for the best model. ## 该 Demo 为 OpenAudio S1 版本, 请在 [Fish Audio](https://fish.audio) 体验最新 DEMO. A text-to-speech model based on DAC & Qwen3 developed by [Fish Audio](https://fish.audio). 由 [Fish Audio](https://fish.audio) 研发的 DAC & Qwen3 多语种语音合成. You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/openaudio-s1-mini). 你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/openaudio-s1-mini) 找到模型. Related code and weights are released under CC BY-NC-SA 4.0 License. 相关代码,权重使用 CC BY-NC-SA 4.0 许可证发布. We are not responsible for any misuse of the model, please consider your local laws and regulations before using it. 我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规. The model running in this WebUI is OpenAudio S1 Mini. 在此 WebUI 中运行的模型是 OpenAudio S1 Mini. """ TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本.""" try: import spaces GPU_DECORATOR = spaces.GPU except ImportError: def GPU_DECORATOR(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper def build_html_error_message(error): return f"""
{html.escape(str(error))}
""" def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1): buffer = io.BytesIO() with wave.open(buffer, "wb") as wav_file: wav_file.setnchannels(channels) wav_file.setsampwidth(bit_depth // 8) wav_file.setframerate(sample_rate) wav_header_bytes = buffer.getvalue() buffer.close() return wav_header_bytes def build_app(inference_fct: Callable, theme: str = "light") -> gr.Blocks: with gr.Blocks(theme=gr.themes.Base()) as app: gr.Markdown(HEADER_MD) # Use light theme by default app.load( None, None, js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}" % theme, ) # Inference with gr.Row(): with gr.Column(scale=3): text = gr.Textbox( label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10 ) with gr.Row(): with gr.Column(): with gr.Tab(label=i18n("Advanced Config")): with gr.Row(): chunk_length = gr.Slider( label=i18n("Iterative Prompt Length, 0 means off"), minimum=0, maximum=500, value=0, step=8, ) max_new_tokens = gr.Slider( label=i18n( "Maximum tokens per batch, 0 means no limit" ), minimum=0, maximum=2048, value=0, step=8, ) with gr.Row(): top_p = gr.Slider( label="Top-P", minimum=0.7, maximum=0.95, value=0.9, step=0.01, ) repetition_penalty = gr.Slider( label=i18n("Repetition Penalty"), minimum=1, maximum=1.2, value=1.1, step=0.01, ) with gr.Row(): temperature = gr.Slider( label="Temperature", minimum=0.7, maximum=1.0, value=0.9, step=0.01, ) seed = gr.Number( label="Seed", info="0 means randomized inference, otherwise deterministic", value=0, ) with gr.Tab(label=i18n("Reference Audio")): with gr.Row(): gr.Markdown( i18n( "5 to 10 seconds of reference audio, useful for specifying speaker." ) ) with gr.Row(): reference_id = gr.Textbox( label=i18n("Reference ID"), placeholder="Leave empty to use uploaded references", ) with gr.Row(): use_memory_cache = gr.Radio( label=i18n("Use Memory Cache"), choices=["on", "off"], value="on", ) with gr.Row(): reference_audio = gr.Audio( label=i18n("Reference Audio"), type="filepath", ) with gr.Row(): reference_text = gr.Textbox( label=i18n("Reference Text"), lines=1, placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。", value="", ) with gr.Column(scale=3): with gr.Row(): error = gr.HTML( label=i18n("Error Message"), visible=True, ) with gr.Row(): audio = gr.Audio( label=i18n("Generated Audio"), type="numpy", interactive=False, visible=True, ) with gr.Row(): with gr.Column(scale=3): generate = gr.Button( value="\U0001f3a7 " + i18n("Generate"), variant="primary", ) # Submit generate.click( inference_fct, [ text, reference_id, reference_audio, reference_text, max_new_tokens, chunk_length, top_p, repetition_penalty, temperature, seed, use_memory_cache, ], [audio, error], concurrency_limit=1, ) return app def parse_args(): parser = ArgumentParser() parser.add_argument( "--llama-checkpoint-path", type=Path, default="checkpoints/openaudio-s1-mini", ) parser.add_argument( "--decoder-checkpoint-path", type=Path, default="checkpoints/openaudio-s1-mini/codec.pth", ) parser.add_argument("--decoder-config-name", type=str, default="modded_dac_vq") parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--half", action="store_true") parser.add_argument("--compile", action="store_true",default=True) parser.add_argument("--max-gradio-length", type=int, default=0) parser.add_argument("--theme", type=str, default="dark") return parser.parse_args() if __name__ == "__main__": args = parse_args() args.precision = torch.half if args.half else torch.bfloat16 logger.info("Loading Llama model...") llama_queue = launch_thread_safe_queue( checkpoint_path=args.llama_checkpoint_path, device=args.device, precision=args.precision, compile=args.compile, ) logger.info("Llama model loaded, loading VQ-GAN model...") decoder_model = load_decoder_model( config_name=args.decoder_config_name, checkpoint_path=args.decoder_checkpoint_path, device=args.device, ) logger.info("Decoder model loaded, warming up...") # Create the inference engine inference_engine = TTSInferenceEngine( llama_queue=llama_queue, decoder_model=decoder_model, compile=args.compile, precision=args.precision, ) # Dry run to check if the model is loaded correctly and avoid the first-time latency list( inference_engine.inference( ServeTTSRequest( text="Hello world.", references=[], reference_id=None, max_new_tokens=1024, chunk_length=200, top_p=0.7, repetition_penalty=1.5, temperature=0.7, format="wav", ) ) ) logger.info("Warming up done, launching the web UI...") inference_fct = get_inference_wrapper(inference_engine) app = build_app(inference_fct, args.theme) app.queue(api_open=True).launch(show_error=True, show_api=True)