Spaces:
Running
on
L4
Running
on
L4
| import pyrootutils | |
| import torch | |
| import torch.nn.functional as F | |
| from matplotlib import pyplot as plt | |
| from transformers import AutoTokenizer | |
| # register eval resolver and root | |
| pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | |
| from torch.utils.data import DataLoader | |
| from fish_speech.datasets.semantic import AutoAugTextDataset, TextDataCollator | |
| from tools.llama.generate import load_model | |
| def smooth( | |
| scalars: list[float], weight: float | |
| ) -> list[float]: # Weight between 0 and 1 | |
| last = scalars[0] # First value in the plot (first timestep) | |
| smoothed = list() | |
| for point in scalars: | |
| smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value | |
| smoothed.append(smoothed_val) # Save it | |
| last = smoothed_val # Anchor the last smoothed value | |
| return smoothed | |
| def analyze_one_model(loader, config, weight, max_length): | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = load_model( | |
| config, | |
| weight, | |
| device, | |
| torch.bfloat16, | |
| max_length, | |
| compile=False, | |
| )[0] | |
| current_step = 0 | |
| model.eval() | |
| semantic_loss_sum = torch.zeros( | |
| max_length, | |
| dtype=torch.float32, | |
| device=device, | |
| ) | |
| counter = torch.zeros( | |
| max_length, | |
| dtype=torch.long, | |
| device=device, | |
| ) | |
| for batch in loader: | |
| batch = {k: v.to(device) for k, v in batch.items()} | |
| labels = batch["labels"] | |
| outputs = model( | |
| inp=batch["inputs"], | |
| key_padding_mask=batch["attention_masks"], | |
| ) | |
| token_logits = outputs.token_logits | |
| codebook_logits = outputs.codebook_logits | |
| # Generate labels | |
| base_loss = F.cross_entropy( | |
| token_logits.reshape(-1, token_logits.size(-1)), | |
| labels[:, 0].reshape(-1), | |
| ignore_index=-100, | |
| reduction="none", | |
| ) | |
| codebook_labels = labels[:, 1 : 1 + model.config.num_codebooks].mT | |
| semantic_loss = F.cross_entropy( | |
| codebook_logits.reshape(-1, codebook_logits.size(-1)), | |
| codebook_labels.reshape(-1), | |
| ignore_index=-100, | |
| reduction="none", | |
| ) | |
| base_loss = base_loss.reshape(labels[:, 0].shape) | |
| semantic_loss = semantic_loss.reshape(codebook_labels.shape) | |
| semantic_loss_frame = semantic_loss.mean(-1) | |
| pad_pos = codebook_labels.sum(-1) == -100 * model.config.num_codebooks | |
| for loss_sample, pad in zip(semantic_loss_frame, pad_pos): | |
| semantic_loss_sum[~pad] += loss_sample[~pad] | |
| counter[~pad] += 1 | |
| current_step += 1 | |
| if current_step == 10: | |
| break | |
| semantic_loss = semantic_loss.cpu() | |
| counter = counter.cpu() | |
| xs, ys = [], [] | |
| for i, (loss, count) in enumerate(zip(semantic_loss_sum, counter)): | |
| if count > 0: | |
| xs.append(i) | |
| ys.append((loss / count).item()) # for better loss visualization | |
| smoothed_ys = smooth(ys, 0.95) | |
| # Unload model | |
| del model | |
| torch.cuda.empty_cache() | |
| return xs, ys, smoothed_ys | |
| def main(): | |
| tokenizer = AutoTokenizer.from_pretrained("fishaudio/fish-speech-1") | |
| max_length = 4096 | |
| ds = AutoAugTextDataset( | |
| ["data/protos/sft/云天河"], | |
| tokenizer=tokenizer, | |
| use_speaker=False, | |
| interactive_prob=1.0, | |
| max_length=max_length, | |
| ) | |
| loader = DataLoader( | |
| ds, | |
| batch_size=8, | |
| collate_fn=TextDataCollator(tokenizer, max_length=max_length), | |
| num_workers=0, | |
| shuffle=False, | |
| ) | |
| plt.figure(figsize=(10, 5), dpi=200) | |
| plt.xlabel("Frame") | |
| plt.ylabel("Loss") | |
| plt.yscale("log") | |
| plt.title("Semantic Loss") | |
| plt.grid(which="both", axis="both") | |
| plt.xlim(0, max_length) | |
| tests = [ | |
| ( | |
| "pertrain-medium", | |
| "dual_ar_2_codebook_medium", | |
| "checkpoints/text2semantic-pretrain-medium-2k-v1.pth", | |
| ), | |
| ( | |
| "sft-medium", | |
| "dual_ar_2_codebook_medium", | |
| "checkpoints/text2semantic-sft-medium-v1.1-4k.pth", | |
| ), | |
| ( | |
| "sft-large", | |
| "dual_ar_2_codebook_large", | |
| "checkpoints/text2semantic-sft-large-v1.1-4k.pth", | |
| ), | |
| ] | |
| for name, config, weight in tests: | |
| xs, _, smoothed_ys = analyze_one_model(loader, config, weight, max_length) | |
| plt.plot(xs, smoothed_ys, label=name) | |
| plt.legend() | |
| plt.savefig("semantic_loss.png") | |
| if __name__ == "__main__": | |
| main() | |