Spaces:
Running
on
L4
Running
on
L4
| from lightning.pytorch.utilities import rank_zero_only | |
| from fish_speech.utils import logger as log | |
| def log_hyperparameters(object_dict: dict) -> None: | |
| """Controls which config parts are saved by lightning loggers. | |
| Additionally saves: | |
| - Number of model parameters | |
| """ | |
| hparams = {} | |
| cfg = object_dict["cfg"] | |
| model = object_dict["model"] | |
| trainer = object_dict["trainer"] | |
| if not trainer.logger: | |
| log.warning("Logger not found! Skipping hyperparameter logging...") | |
| return | |
| hparams["model"] = cfg["model"] | |
| # save number of model parameters | |
| hparams["model/params/total"] = sum(p.numel() for p in model.parameters()) | |
| hparams["model/params/trainable"] = sum( | |
| p.numel() for p in model.parameters() if p.requires_grad | |
| ) | |
| hparams["model/params/non_trainable"] = sum( | |
| p.numel() for p in model.parameters() if not p.requires_grad | |
| ) | |
| hparams["data"] = cfg["data"] | |
| hparams["trainer"] = cfg["trainer"] | |
| hparams["callbacks"] = cfg.get("callbacks") | |
| hparams["extras"] = cfg.get("extras") | |
| hparams["task_name"] = cfg.get("task_name") | |
| hparams["tags"] = cfg.get("tags") | |
| hparams["ckpt_path"] = cfg.get("ckpt_path") | |
| hparams["seed"] = cfg.get("seed") | |
| # send hparams to all loggers | |
| for logger in trainer.loggers: | |
| logger.log_hyperparams(hparams) | |