Spaces:
Running
on
L4
Running
on
L4
| import base64 | |
| import json | |
| import logging | |
| import re | |
| from pathlib import Path | |
| import tiktoken | |
| logger = logging.getLogger(__name__) | |
| # This is a modified version of the default pattern from GPT-4o, that better handles punctuations. | |
| FISH_TIKTOKEN_PATTERN = "|".join( | |
| [ | |
| r"(?i:'s|'t|'re|'ve|'m|'ll|'d)", | |
| r"\p{P}", | |
| r"[^\r\n\p{L}\p{N}]?\p{L}+", | |
| r"\p{N}", | |
| r" ?[^\s\p{L}\p{N}]+[\r\n]*", | |
| r"\s*[\r\n]+", | |
| r"\s+(\?!\S)", | |
| r"\s+", | |
| ] | |
| ) | |
| TIKTOKEN_MAX_ENCODE_CHARS = 400_000 | |
| BOS_TOKEN = "<|begin_of_text|>" | |
| EOS_TOKEN = "<|end_of_text|>" | |
| PAD_TOKEN = "<|pad|>" | |
| IM_START_TOKEN = "<|im_start|>" | |
| IM_END_TOKEN = "<|im_end|>" | |
| PHONEME_START_TOKEN = "<|phoneme_start|>" | |
| PHONEME_END_TOKEN = "<|phoneme_end|>" | |
| TOOL_CALL_START_TOKEN = "<|tool_call_start|>" | |
| TOOL_CALL_END_TOKEN = "<|tool_call_end|>" | |
| MODALITY_TEXT_TOKEN = "<|text|>" | |
| MODALITY_VOICE_TOKEN = "<|voice|>" | |
| MODALITY_INTERLEAVE_TOKEN = "<|interleave|>" | |
| AUDIO_START_TOKEN = "<|audio_start|>" | |
| AUDIO_END_TOKEN = "<|audio_end|>" | |
| AUDIO_EMBED_TOKEN = "<|audio|>" | |
| MODALITY_TOKENS = { | |
| "text": MODALITY_TEXT_TOKEN, | |
| "voice": MODALITY_VOICE_TOKEN, | |
| "interleave": MODALITY_INTERLEAVE_TOKEN, | |
| } | |
| SEMANTIC_TOKEN_TEMPLATE = "<|semantic:{i}|>" | |
| SEMANTIC_TOKENS = [SEMANTIC_TOKEN_TEMPLATE.format(i=i) for i in range(1024)] | |
| # Warning: when you add a new special token, you should only add it to the end of the list. | |
| ALL_SPECIAL_TOKENS = [ | |
| BOS_TOKEN, | |
| EOS_TOKEN, | |
| PAD_TOKEN, | |
| IM_START_TOKEN, | |
| IM_END_TOKEN, | |
| PHONEME_START_TOKEN, | |
| PHONEME_END_TOKEN, | |
| TOOL_CALL_START_TOKEN, | |
| TOOL_CALL_END_TOKEN, | |
| MODALITY_TEXT_TOKEN, | |
| MODALITY_VOICE_TOKEN, | |
| MODALITY_INTERLEAVE_TOKEN, | |
| AUDIO_START_TOKEN, | |
| AUDIO_END_TOKEN, | |
| AUDIO_EMBED_TOKEN, | |
| *SEMANTIC_TOKENS, | |
| ] | |
| class FishTokenizer: | |
| def __init__( | |
| self, model_path: str, special_tokens: list[str] = ALL_SPECIAL_TOKENS | |
| ) -> None: | |
| mergeable_ranks = self.load_tiktoken_bpe(model_path) | |
| special_token_begin = len(mergeable_ranks) | |
| self.all_special_tokens_with_ids = { | |
| token: special_token_begin + i for i, token in enumerate(special_tokens) | |
| } | |
| self.semantic_id_to_token_id = {} | |
| end_idx = 0 | |
| for token in special_tokens: | |
| if token.startswith("<|semantic:"): | |
| idx = int(re.match(r"<\|semantic:(\d+)\|>", token).group(1)) | |
| self.semantic_id_to_token_id[idx] = self.all_special_tokens_with_ids[ | |
| token | |
| ] | |
| if idx > end_idx: | |
| end_idx = idx | |
| self.semantic_begin_id = self.semantic_id_to_token_id[0] | |
| self.semantic_end_id = self.semantic_id_to_token_id[end_idx] | |
| self.tkt_model = tiktoken.core.Encoding( | |
| name=Path(model_path).stem, | |
| pat_str=FISH_TIKTOKEN_PATTERN, | |
| mergeable_ranks=mergeable_ranks, | |
| special_tokens=self.all_special_tokens_with_ids, | |
| ) | |
| def vocab_size(self): | |
| return len(self.tkt_model._mergeable_ranks) | |
| def num_special_tokens(self): | |
| return len(self.all_special_tokens_with_ids) | |
| def load_tiktoken_bpe(tiktoken_bpe_file: str) -> dict[bytes, int]: | |
| data = {} | |
| for line in open(tiktoken_bpe_file).read().splitlines(): | |
| if not line: | |
| continue | |
| token, rank = line.split() | |
| if token == "=": | |
| continue | |
| data[base64.b64decode(token)] = int(rank) | |
| return data | |
| def get_token_id(self, token: str) -> int: | |
| return self.all_special_tokens_with_ids[token] | |
| def encode(self, s: str, allowed_special: bool | set[str] = True) -> list[int]: | |
| assert isinstance(s, str) | |
| subs = [] | |
| for i in range(0, len(s), TIKTOKEN_MAX_ENCODE_CHARS): | |
| subs.append(s[i : i + TIKTOKEN_MAX_ENCODE_CHARS]) | |
| if allowed_special is True: | |
| allowed_special = self.tkt_model.special_tokens_set | |
| elif allowed_special is False: | |
| allowed_special = set() | |
| return sum( | |
| self.tkt_model.encode_batch( | |
| subs, allowed_special=allowed_special, disallowed_special=set() | |
| ), | |
| start=[], | |
| ) | |
| def decode(self, tokens: list[int]) -> str: | |
| return self.tkt_model.decode(tokens) | |
| def save_pretrained(self, path: str): | |
| path = Path(path) | |
| path.mkdir(parents=True, exist_ok=True) | |
| with open(path / "tokenizer.tiktoken", "w") as f: | |
| for token, rank in self.tkt_model._mergeable_ranks.items(): | |
| a = base64.b64encode(token).decode() | |
| if a == "": | |
| a = "=" | |
| f.write(f"{a} {rank}\n") | |
| with open(path / "special_tokens.json", "w") as f: | |
| json.dump( | |
| self.all_special_tokens_with_ids, | |
| f, | |
| indent=2, | |
| ensure_ascii=False, | |
| ) | |
| def from_pretrained(path: str): | |
| special_tokens_path = Path(path) / "special_tokens.json" | |
| if special_tokens_path.exists(): | |
| with open(special_tokens_path) as f: | |
| all_special_tokens_with_ids = json.load(f) | |
| else: | |
| all_special_tokens_with_ids = ALL_SPECIAL_TOKENS | |
| return FishTokenizer( | |
| Path(path) / "tokenizer.tiktoken", all_special_tokens_with_ids | |
| ) | |