Spaces:
Running
on
L4
Running
on
L4
| import io | |
| from hashlib import sha256 | |
| from pathlib import Path | |
| from typing import Callable, Literal, Tuple | |
| import torch | |
| import torchaudio | |
| from loguru import logger | |
| from fish_speech.models.dac.modded_dac import DAC | |
| from fish_speech.utils.file import ( | |
| AUDIO_EXTENSIONS, | |
| audio_to_bytes, | |
| list_files, | |
| read_ref_text, | |
| ) | |
| from fish_speech.utils.schema import ServeReferenceAudio | |
| class ReferenceLoader: | |
| def __init__(self) -> None: | |
| """ | |
| Component of the TTSInferenceEngine class. | |
| Loads and manages the cache for the reference audio and text. | |
| """ | |
| self.ref_by_id: dict = {} | |
| self.ref_by_hash: dict = {} | |
| # Make Pylance happy (attribut/method not defined...) | |
| self.decoder_model: DAC | |
| self.encode_reference: Callable | |
| # Define the torchaudio backend | |
| backends = torchaudio.list_audio_backends() | |
| if "ffmpeg" in backends: | |
| self.backend = "ffmpeg" | |
| else: | |
| self.backend = "soundfile" | |
| def load_by_id( | |
| self, | |
| id: str, | |
| use_cache: Literal["on", "off"], | |
| ) -> Tuple: | |
| # Load the references audio and text by id | |
| ref_folder = Path("references") / id | |
| ref_folder.mkdir(parents=True, exist_ok=True) | |
| ref_audios = list_files( | |
| ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False | |
| ) | |
| if use_cache == "off" or id not in self.ref_by_id: | |
| # If the references are not already loaded, encode them | |
| prompt_tokens = [ | |
| self.encode_reference( | |
| # decoder_model=self.decoder_model, | |
| reference_audio=audio_to_bytes(str(ref_audio)), | |
| enable_reference_audio=True, | |
| ) | |
| for ref_audio in ref_audios | |
| ] | |
| prompt_texts = [ | |
| read_ref_text(str(ref_audio.with_suffix(".lab"))) | |
| for ref_audio in ref_audios | |
| ] | |
| self.ref_by_id[id] = (prompt_tokens, prompt_texts) | |
| else: | |
| # Reuse already encoded references | |
| logger.info("Use same references") | |
| prompt_tokens, prompt_texts = self.ref_by_id[id] | |
| return prompt_tokens, prompt_texts | |
| def load_by_hash( | |
| self, | |
| references: list[ServeReferenceAudio], | |
| use_cache: Literal["on", "off"], | |
| ) -> Tuple: | |
| # Load the references audio and text by hash | |
| audio_hashes = [sha256(ref.audio).hexdigest() for ref in references] | |
| cache_used = False | |
| prompt_tokens, prompt_texts = [], [] | |
| for i, ref in enumerate(references): | |
| if use_cache == "off" or audio_hashes[i] not in self.ref_by_hash: | |
| # If the references are not already loaded, encode them | |
| prompt_tokens.append( | |
| self.encode_reference( | |
| reference_audio=ref.audio, | |
| enable_reference_audio=True, | |
| ) | |
| ) | |
| prompt_texts.append(ref.text) | |
| self.ref_by_hash[audio_hashes[i]] = (prompt_tokens[-1], ref.text) | |
| else: | |
| # Reuse already encoded references | |
| cached_token, cached_text = self.ref_by_hash[audio_hashes[i]] | |
| prompt_tokens.append(cached_token) | |
| prompt_texts.append(cached_text) | |
| cache_used = True | |
| if cache_used: | |
| logger.info("Use same references") | |
| return prompt_tokens, prompt_texts | |
| def load_audio(self, reference_audio, sr): | |
| """ | |
| Load the audio data from a file or bytes. | |
| """ | |
| if len(reference_audio) > 255 or not Path(reference_audio).exists(): | |
| audio_data = reference_audio | |
| reference_audio = io.BytesIO(audio_data) | |
| waveform, original_sr = torchaudio.load(reference_audio, backend=self.backend) | |
| if waveform.shape[0] > 1: | |
| waveform = torch.mean(waveform, dim=0, keepdim=True) | |
| if original_sr != sr: | |
| resampler = torchaudio.transforms.Resample( | |
| orig_freq=original_sr, new_freq=sr | |
| ) | |
| waveform = resampler(waveform) | |
| audio = waveform.squeeze().numpy() | |
| return audio | |