Spaces:
Running
on
L4
Running
on
L4
| from dataclasses import dataclass, field | |
| from typing import List, Literal, Union | |
| import numpy as np | |
| import torch | |
| from fish_speech.tokenizer import ( | |
| IM_END_TOKEN, | |
| MODALITY_TOKENS, | |
| FishTokenizer, | |
| ) | |
| def restore_ndarray(obj, to_tensor: bool = False): | |
| if isinstance(obj, dict) and "__ndarray__" in obj: | |
| obj = np.frombuffer(obj["data"], dtype=obj["dtype"]).reshape(obj["shape"]) | |
| if to_tensor and isinstance(obj, np.ndarray): | |
| obj = torch.from_numpy(obj.copy()) | |
| return obj | |
| class BasePart: | |
| type: Literal["text", "vq", "audio"] | None = None | |
| cal_loss: bool = False | |
| class VQPart(BasePart): | |
| type = "vq" | |
| codes: torch.Tensor | |
| def __post_init__(self: "VQPart"): | |
| self.type = "vq" | |
| self.codes = restore_ndarray(self.codes, to_tensor=True) | |
| class TextPart(BasePart): | |
| type = "text" | |
| text: str | None = None | |
| tokens: list[int] | None = None | |
| def __post_init__(self: "TextPart"): | |
| self.type = "text" | |
| if self.text is None and self.tokens is None: | |
| raise ValueError("Either text or tokens must be provided") | |
| class AudioPart(BasePart): | |
| type = "audio" | |
| features: torch.Tensor | |
| def __post_init__(self: "AudioPart"): | |
| self.type = "audio" | |
| self.features = restore_ndarray(self.features, to_tensor=True) | |
| class EncodedMessage: | |
| tokens: torch.Tensor | |
| labels: torch.Tensor | |
| vq_mask_tokens: torch.Tensor | None = None | |
| vq_mask_labels: torch.Tensor | None = None | |
| vq_parts: list[torch.Tensor] | |
| vq_require_losses: torch.Tensor | None = None | |
| audio_parts: list[torch.Tensor] | |
| audio_masks: torch.Tensor | None = None | |
| metadata: dict | None = None | |
| class ContentSequence: | |
| """ | |
| Flexible sequence of content parts that supports interleaved multimodal format. | |
| Example format: <|interleave|><|speaker:1|> TEXT AUDIO <|im_end|><|speaker:2|> TEXT AUDIO <|im_end|> | |
| """ | |
| parts: list[BasePart] = field(default_factory=list) | |
| modality: Literal["text", "voice", "interleave"] | None = None | |
| metadata: dict | None = None | |
| def __init__( | |
| self: "ContentSequence", | |
| parts: list[BasePart | dict] | None = None, | |
| modality: Literal["text", "voice", "interleave"] | None = None, | |
| metadata: dict | None = None, | |
| ): | |
| self.modality = modality | |
| self.metadata = metadata or {} | |
| fixed_parts = [] | |
| for part in parts or []: | |
| if isinstance(part, dict): | |
| if part["type"] == "vq": | |
| part = VQPart(**part) | |
| elif part["type"] == "audio": | |
| part = AudioPart(**part) | |
| elif part["type"] == "text": | |
| part = TextPart(**part) | |
| else: | |
| raise ValueError(f"Unsupported part type: {part['type']}") | |
| fixed_parts.append(part) | |
| self.parts = fixed_parts | |
| # If modality is specified, add it at the beginning if it's not already there | |
| if self.modality and not ( | |
| len(self.parts) > 0 | |
| and isinstance(self.parts[0], dict) is False | |
| and isinstance(self.parts[0], TextPart) | |
| and self.parts[0].text is not None | |
| and self.parts[0].text.startswith(MODALITY_TOKENS[self.modality]) | |
| ): | |
| modality_token = MODALITY_TOKENS[self.modality] | |
| self.parts.insert(0, TextPart(text=modality_token)) | |
| def append( | |
| self: "ContentSequence", | |
| part_or_parts: Union[BasePart, List[BasePart]], | |
| add_end: bool = False, | |
| speaker: Union[str, int] | None = None, | |
| ): | |
| """ | |
| Append a part or list of parts to the sequence. | |
| Args: | |
| part_or_parts: A single part or list of parts to add | |
| add_end: Whether to add the IM_END_TOKEN after these parts | |
| speaker: Optional speaker identifier (name or ID) to add before the parts | |
| """ | |
| # Convert single part to list | |
| parts_to_add = ( | |
| [part_or_parts] if not isinstance(part_or_parts, list) else part_or_parts | |
| ) | |
| # Add speaker token if specified | |
| if speaker is not None: | |
| speaker_token = f"<|speaker:{speaker}|>" | |
| self.parts.append(TextPart(text=speaker_token)) | |
| # Add all the parts | |
| self.parts.extend(parts_to_add) | |
| # Add end token if requested | |
| if add_end: | |
| self.parts.append( | |
| TextPart(text=IM_END_TOKEN, cal_loss=self.parts[-1].cal_loss) | |
| ) | |
| def encode( | |
| self: "ContentSequence", | |
| tokenizer: FishTokenizer, | |
| add_shift: bool = True, | |
| ignore_loss_tokens: list[str] = [], | |
| ) -> EncodedMessage: | |
| """ | |
| Encode the sequence parts into tokens for the model. | |
| Args: | |
| tokenizer: The tokenizer to use | |
| add_shift: Whether to shift tokens for next-token prediction | |
| ignore_loss_tokens: List of token strings to ignore when calculating loss | |
| Returns: | |
| EncodedMessage with tensors ready for the model | |
| """ | |
| all_tokens = [] | |
| all_labels = [] | |
| # Multi-modal elements | |
| vq_parts = [] | |
| vq_masks = [] | |
| vq_require_losses = [] | |
| audio_parts = [] | |
| audio_masks = [] | |
| ignore_loss_token_ids = [tokenizer.get_token_id(i) for i in ignore_loss_tokens] | |
| for part in self.parts: | |
| if isinstance(part, TextPart): | |
| if part.tokens is None: | |
| assert part.text is not None | |
| tokens = tokenizer.encode(part.text) | |
| else: | |
| tokens = part.tokens | |
| tokens = torch.tensor(tokens, dtype=torch.int) | |
| elif isinstance(part, VQPart): | |
| curr_codes = part.codes.clone().to(torch.int) | |
| tokens = torch.tensor( | |
| [ | |
| tokenizer.semantic_id_to_token_id[int(i.item())] | |
| for i in curr_codes[0].int() | |
| ], | |
| dtype=torch.int, | |
| ) | |
| vq_parts.append(curr_codes) | |
| vq_require_losses.append(part.cal_loss) | |
| else: | |
| raise ValueError(f"Unsupported part type: {type(part)}") | |
| all_tokens.append(tokens) | |
| # Set masks for different part types | |
| if isinstance(part, VQPart): | |
| vq_masks.append(torch.ones_like(tokens, dtype=torch.bool)) | |
| audio_masks.append(torch.zeros_like(tokens, dtype=torch.bool)) | |
| elif isinstance(part, AudioPart): | |
| vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool)) | |
| audio_mask = torch.ones_like(tokens, dtype=torch.bool) | |
| audio_mask[0] = False # Skip start token | |
| audio_mask[-1] = False # Skip end token | |
| audio_masks.append(audio_mask) | |
| else: | |
| vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool)) | |
| audio_masks.append(torch.zeros_like(tokens, dtype=torch.bool)) | |
| # Set labels based on whether we want to calculate loss for this part | |
| if part.cal_loss and not isinstance(part, AudioPart): | |
| all_labels.append(tokens.clone()) | |
| else: | |
| all_labels.append(torch.full_like(tokens, -100)) | |
| # Concatenate all tensors | |
| tokens = torch.cat(all_tokens, dim=0) | |
| labels = torch.cat(all_labels, dim=0) | |
| vq_masks = torch.cat(vq_masks, dim=0) | |
| audio_masks = torch.cat(audio_masks, dim=0) | |
| vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool) | |
| # Apply shift if needed for next-token prediction | |
| vq_mask_tokens = vq_masks | |
| vq_mask_labels = vq_masks | |
| if add_shift: | |
| tokens = tokens[:-1] | |
| labels = labels[1:] | |
| vq_masks = vq_masks[:-1] | |
| vq_mask_tokens = vq_mask_tokens[:-1] | |
| vq_mask_labels = vq_mask_labels[1:] | |
| audio_masks = audio_masks[:-1] | |
| # Ignore specified tokens | |
| for i in ignore_loss_token_ids: | |
| assert i != -100 and i is not None | |
| labels[labels == i] = -100 | |
| assert tokens.dtype in [ | |
| torch.int, | |
| torch.long, | |
| ], f"Invalid dtype: {tokens.dtype}" | |
| return EncodedMessage( | |
| tokens=tokens, | |
| labels=labels, | |
| vq_parts=vq_parts, | |
| vq_mask_tokens=vq_mask_tokens, | |
| vq_mask_labels=vq_mask_labels, | |
| vq_require_losses=vq_require_losses, | |
| audio_parts=audio_parts, | |
| audio_masks=audio_masks, | |
| metadata=self.metadata, | |
| ) | |
| def encode_for_inference( | |
| self: "ContentSequence", | |
| tokenizer: FishTokenizer, | |
| num_codebooks: int, | |
| ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| encoded = self.encode(tokenizer, add_shift=False) | |
| tokens = encoded.tokens | |
| values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int) | |
| values[0] = tokens | |
| if (encoded.vq_parts is None or len(encoded.vq_parts) == 0) and ( | |
| encoded.audio_parts is None or len(encoded.audio_parts) == 0 | |
| ): | |
| return values, None, None | |
| audio_parts = audio_masks = None | |
| if encoded.vq_parts is not None and len(encoded.vq_parts) > 0: | |
| vq_parts = encoded.vq_parts | |
| vq_parts = torch.cat(vq_parts, dim=1) | |
| values[0, encoded.vq_mask_tokens] = ( | |
| vq_parts[0] + tokenizer.semantic_begin_id | |
| ) | |
| values[1:, encoded.vq_mask_tokens] = vq_parts | |
| if encoded.audio_parts is not None and len(encoded.audio_parts) > 0: | |
| audio_parts = torch.cat(encoded.audio_parts, dim=0) | |
| audio_masks = encoded.audio_masks[None, :] | |
| return values, audio_masks, audio_parts | |
| def visualize( | |
| self: "ContentSequence", | |
| tokenizer: FishTokenizer, | |
| ignore_loss_tokens: list[str] = [], | |
| merge_semantic_tokens: bool = False, | |
| ): | |
| """ | |
| Visualize the encoded sequence with color-coded tokens. | |
| Blue/cyan tokens contribute to loss, green tokens do not. | |
| """ | |
| encoded = self.encode( | |
| tokenizer, add_shift=False, ignore_loss_tokens=ignore_loss_tokens | |
| ) | |
| # Colors for alternating tokens | |
| colors = { | |
| "blue": "\033[94m", # Light blue | |
| "cyan": "\033[96m", # Cyan | |
| "green": "\033[92m", # Light green | |
| "dark_green": "\033[32m", # Dark green | |
| } | |
| blue_idx = 0 | |
| green_idx = 0 | |
| def print_in_blue(x): | |
| nonlocal blue_idx | |
| color = colors["blue"] if blue_idx % 2 == 0 else colors["cyan"] | |
| print(f"{color}{x}\033[0m", end="") | |
| blue_idx += 1 | |
| def print_in_green(x): | |
| nonlocal green_idx | |
| color = colors["green"] if green_idx % 2 == 0 else colors["dark_green"] | |
| print(f"{color}{x}\033[0m", end="") | |
| green_idx += 1 | |
| def print_semantic_token(x, count): | |
| val = f"[<|semantic|>x{count}]" | |
| if x == -100: | |
| print_in_green(val) | |
| else: | |
| print_in_blue(val) | |
| count_semantic_tokens = 0 | |
| semantic_label = None | |
| for tok, lab in zip(encoded.tokens, encoded.labels): | |
| token_id = int(tok.item()) | |
| if merge_semantic_tokens: | |
| if ( | |
| tokenizer.semantic_begin_id <= token_id <= tokenizer.semantic_end_id | |
| and (semantic_label is None or semantic_label == lab) | |
| ): | |
| count_semantic_tokens += 1 | |
| semantic_label = lab | |
| continue | |
| elif count_semantic_tokens > 0: | |
| print_semantic_token(semantic_label, count_semantic_tokens) | |
| count_semantic_tokens = 0 | |
| semantic_label = None | |
| val = tokenizer.decode([int(tok.item())]) | |
| if lab == -100: | |
| print_in_green(val) | |
| else: | |
| print_in_blue(val) | |
| if merge_semantic_tokens and count_semantic_tokens > 0: | |
| print_semantic_token(semantic_label, count_semantic_tokens) | |
| print() | |