|
import numpy as np |
|
import torch |
|
from functools import lru_cache |
|
from sentence_transformers import SentenceTransformer |
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
list_models = [ |
|
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2', |
|
'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2', |
|
'sentence-transformers/all-mpnet-base-v2', |
|
'sentence-transformers/all-MiniLM-L12-v2', |
|
'cyclone/simcse-chinese-roberta-wwm-ext' |
|
] |
|
|
|
|
|
class SBert: |
|
def __init__(self, path): |
|
print(f'Loading model from {path} ...') |
|
self.model = SentenceTransformer(path, device=DEVICE) |
|
|
|
@lru_cache(maxsize=10000) |
|
def __call__(self, x) -> np.ndarray: |
|
y = self.model.encode(x) |
|
return y |
|
|