File size: 9,393 Bytes
e619418 e0e0fed 7c9213f e0e0fed 7938b64 76a890e e0e0fed e7e651d e0e0fed e9f434e e0e0fed e7e651d 4ec1154 76a890e e0e0fed e619418 9e26efb e0e0fed 1a05b57 7c9213f 1a05b57 d086be7 1a05b57 9e26efb 1a05b57 e0e0fed e7e651d b0f5547 e619418 e7e651d e619418 e7e651d e619418 e7e651d e619418 e7e651d e619418 e7e651d e619418 e0e0fed b0f5547 1a05b57 e619418 e9f434e e0e0fed 38c394b e0e0fed e619418 b0f5547 1a05b57 e619418 e9f434e e0e0fed 00f2e1a 37cf1cd fc051c2 37cf1cd fc051c2 37cf1cd fc051c2 e0e0fed 00f2e1a e0e0fed e9f434e e0e0fed e1592e8 e0e0fed da8336d e0e0fed da8336d e0e0fed da8336d 2a8bb88 e0e0fed e9f434e e0e0fed e1592e8 e0e0fed da8336d 7938b64 e0e0fed 2a8bb88 e0e0fed 7938b64 da8336d aa7dd73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import dataclasses as dc
import io
from functools import cache
from typing import Any
import gradio as gr
import pillow_heif
from environs import Env
from finegrain import BoundingBox, EditorAPIContext, EraseResultWithImage, ErrorResult
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from typing_extensions import TypeIs
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
env = Env()
env.read_env()
with env.prefixed("ERASER_"):
API_USER: str | None = env.str("API_USER")
API_PASSWORD: str | None = env.str("API_PASSWORD")
API_URL: str | None = env.str("API_URL", None)
CA_BUNDLE: str | None = env.str("CA_BUNDLE", None)
@cache
def _ctx() -> EditorAPIContext:
assert API_USER is not None
assert API_PASSWORD is not None
ctx = EditorAPIContext(
user=API_USER,
password=API_PASSWORD,
priority="low",
user_agent="fg-hf-eraser",
)
if CA_BUNDLE:
ctx.verify = CA_BUNDLE
if API_URL:
ctx.base_url = API_URL
return ctx
def is_error(result: Any) -> TypeIs[ErrorResult]:
if isinstance(result, ErrorResult):
raise RuntimeError(result.error)
return False
def resize(image: Image.Image, shortest_side: int = 768) -> Image.Image:
if image.width <= shortest_side and image.height <= shortest_side:
return image
if image.width < image.height:
return image.resize(size=(shortest_side, int(shortest_side * image.height / image.width)))
return image.resize(size=(int(shortest_side * image.width / image.height), shortest_side))
@dc.dataclass(kw_only=True)
class ProcessParams:
image: Image.Image
prompt: str | None = None
bbox: BoundingBox | None = None
async def _process(ctx: EditorAPIContext, params: ProcessParams) -> Image.Image:
with io.BytesIO() as f:
params.image.save(f, format="JPEG")
st_input = await ctx.call_async.upload_image(f)
if params.bbox:
segment_input_st, segment_bbox = st_input, params.bbox
else:
assert params.prompt
bbox_r = await ctx.call_async.infer_bbox(st_input, params.prompt)
assert not is_error(bbox_r)
segment_input_st, segment_bbox = bbox_r.state_id, None
mask_r = await ctx.call_async.segment(segment_input_st, bbox=segment_bbox)
assert not is_error(mask_r)
erased_r = await ctx.call_async.erase(st_input, mask_r.state_id, mode="express", with_image=True)
assert not is_error(erased_r)
assert isinstance(erased_r, EraseResultWithImage)
f = io.BytesIO()
f.write(erased_r.image)
f.seek(0)
return Image.open(f)
def process_bbox(prompts: dict[str, Any]) -> tuple[Image.Image, Image.Image]:
assert isinstance(img := prompts["image"], Image.Image)
assert isinstance(boxes := prompts["boxes"], list)
assert len(boxes) == 1
assert isinstance(box := boxes[0], dict)
resized_img = resize(img)
bbox = [box[k] for k in ["xmin", "ymin", "xmax", "ymax"]]
if resized_img.width != img.width:
bbox = [int(v * resized_img.width / img.width) for v in bbox]
output_image = _ctx().run_one_sync(
_process,
ProcessParams(
image=resized_img,
bbox=(bbox[0], bbox[1], bbox[2], bbox[3]),
),
)
return (img, output_image)
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None and len(prompts["boxes"]) > 0)
def process_prompt(img: Image.Image, prompt: str) -> tuple[Image.Image, Image.Image]:
resized_img = resize(img)
output_image = _ctx().run_one_sync(
_process,
ProcessParams(image=resized_img, prompt=prompt),
)
return (img, output_image)
def on_change_prompt(img: Image.Image | None, prompt: str | None):
return gr.update(interactive=bool(img and prompt))
TITLE = """
<h1>Finegrain Object Eraser (Lite Version)</h1>
<p>
Erase any object, along with its shadows and reflections, just by naming it!
</p>
<p>
🔌 For high-resolution results with scene preservation, superior shadow/reflection removal
and enhanced missing pixel generation, <a href="https://finegrain.ai">try the Finegrain API</a> ! 🔌
</p>
<p>
<a href="https://discord.gg/zFKg5TjXub" target="_blank">[Discord]</a>
<a href="https://github.com/finegrain-ai" target="_blank">[GitHub]</a>
<a href="https://finegrain.ai">[Finegrain API]</a>
</p>
"""
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Tab("By prompt", id="tab_prompt"):
with gr.Row():
with gr.Column():
iimg = gr.Image(type="pil", label="Input")
prompt = gr.Textbox(label="What should we erase?")
with gr.Column():
oimg = ImageSlider(label="Output")
with gr.Row():
btn = gr.ClearButton(components=[oimg], value="Erase Object", interactive=False)
for inp in [iimg, prompt]:
inp.change(
fn=on_change_prompt,
inputs=[iimg, prompt],
outputs=[btn],
)
btn.click(
fn=process_prompt,
inputs=[iimg, prompt],
outputs=[oimg],
api_name=False,
)
examples = [
[
"examples/white-towels-rattan-basket-white-table-with-bright-room-background.jpg",
"soap",
],
[
"examples/interior-decor-with-mirror-potted-plant.jpg",
"potted plant",
],
[
"examples/detail-ball-basketball-court-sunset.jpg",
"basketball",
],
[
"examples/still-life-device-table_23-2150994394.jpg",
"glass of water",
],
[
"examples/knife-fork-green-checkered-napkin_140725-63576.jpg",
"knife and fork",
],
[
"examples/city-night-with-architecture-vibrant-lights_23-2149836930.jpg",
"frontmost black car on right lane",
],
[
"examples/close-up-coffee-latte-wooden-table_23-2147893063.jpg",
"coffee cup on plate",
],
[
"examples/empty-chair-with-vase-plant_74190-2078.jpg",
"chair",
],
]
ex = gr.Examples(
examples=examples,
inputs=[iimg, prompt],
outputs=[oimg],
fn=process_prompt,
cache_examples=True,
)
with gr.Tab("By bounding box", id="tab_bb"):
with gr.Row():
with gr.Column():
annotator = image_annotator(
image_type="pil",
disable_edit_boxes=True,
show_download_button=False,
show_share_button=False,
single_box=True,
label="Input",
)
with gr.Column():
oimg = ImageSlider(label="Output")
with gr.Row():
btn = gr.ClearButton(components=[oimg], value="Erase Object", interactive=False)
annotator.change(
fn=on_change_bbox,
inputs=[annotator],
outputs=[btn],
)
btn.click(
fn=process_bbox,
inputs=[annotator],
outputs=[oimg],
api_name=False,
)
examples = [
{
"image": "examples/white-towels-rattan-basket-white-table-with-bright-room-background.jpg",
"boxes": [{"xmin": 836, "ymin": 475, "xmax": 1125, "ymax": 1013}],
},
{
"image": "examples/interior-decor-with-mirror-potted-plant.jpg",
"boxes": [{"xmin": 47, "ymin": 907, "xmax": 397, "ymax": 1633}],
},
{
"image": "examples/detail-ball-basketball-court-sunset.jpg",
"boxes": [{"xmin": 673, "ymin": 954, "xmax": 911, "ymax": 1186}],
},
{
"image": "examples/still-life-device-table_23-2150994394.jpg",
"boxes": [{"xmin": 429, "ymin": 586, "xmax": 571, "ymax": 834}],
},
{
"image": "examples/knife-fork-green-checkered-napkin_140725-63576.jpg",
"boxes": [{"xmin": 972, "ymin": 226, "xmax": 1092, "ymax": 1023}],
},
{
"image": "examples/city-night-with-architecture-vibrant-lights_23-2149836930.jpg",
"boxes": [{"xmin": 215, "ymin": 637, "xmax": 411, "ymax": 855}],
},
{
"image": "examples/close-up-coffee-latte-wooden-table_23-2147893063.jpg",
"boxes": [{"xmin": 255, "ymin": 456, "xmax": 1080, "ymax": 1064}],
},
{
"image": "examples/empty-chair-with-vase-plant_74190-2078.jpg",
"boxes": [{"xmin": 35, "ymin": 320, "xmax": 383, "ymax": 983}],
},
]
ex = gr.Examples(
examples=examples,
inputs=[annotator],
outputs=[oimg],
fn=process_bbox,
cache_examples=True,
)
demo.queue(max_size=30, api_open=False)
demo.launch(show_api=False)
|