Spaces:
Running
Running
Update ONNXVITS_infer.py
Browse files- ONNXVITS_infer.py +127 -8
ONNXVITS_infer.py
CHANGED
|
@@ -1,6 +1,102 @@
|
|
| 1 |
import torch
|
| 2 |
import commons
|
| 3 |
import models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
class SynthesizerTrn(models.SynthesizerTrn):
|
| 5 |
"""
|
| 6 |
Synthesizer for Training
|
|
@@ -26,6 +122,7 @@ class SynthesizerTrn(models.SynthesizerTrn):
|
|
| 26 |
n_speakers=0,
|
| 27 |
gin_channels=0,
|
| 28 |
use_sdp=True,
|
|
|
|
| 29 |
**kwargs):
|
| 30 |
|
| 31 |
super().__init__(
|
|
@@ -50,16 +147,21 @@ class SynthesizerTrn(models.SynthesizerTrn):
|
|
| 50 |
use_sdp=use_sdp,
|
| 51 |
**kwargs
|
| 52 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
| 55 |
from ONNXVITS_utils import runonnx
|
| 56 |
|
| 57 |
-
|
| 58 |
-
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
|
| 59 |
-
x = torch.from_numpy(x)
|
| 60 |
-
m_p = torch.from_numpy(m_p)
|
| 61 |
-
logs_p = torch.from_numpy(logs_p)
|
| 62 |
-
x_mask = torch.from_numpy(x_mask)
|
| 63 |
|
| 64 |
if self.n_speakers > 0:
|
| 65 |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
|
@@ -151,4 +253,21 @@ class SynthesizerTrn(models.SynthesizerTrn):
|
|
| 151 |
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy())
|
| 152 |
o = torch.from_numpy(o[0])
|
| 153 |
|
| 154 |
-
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import commons
|
| 3 |
import models
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
|
| 9 |
+
import modules
|
| 10 |
+
import attentions
|
| 11 |
+
import monotonic_align
|
| 12 |
+
|
| 13 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
| 14 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 15 |
+
from commons import init_weights, get_padding
|
| 16 |
+
|
| 17 |
+
class TextEncoder(nn.Module):
|
| 18 |
+
def __init__(self,
|
| 19 |
+
n_vocab,
|
| 20 |
+
out_channels,
|
| 21 |
+
hidden_channels,
|
| 22 |
+
filter_channels,
|
| 23 |
+
n_heads,
|
| 24 |
+
n_layers,
|
| 25 |
+
kernel_size,
|
| 26 |
+
p_dropout,
|
| 27 |
+
emotion_embedding):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.n_vocab = n_vocab
|
| 30 |
+
self.out_channels = out_channels
|
| 31 |
+
self.hidden_channels = hidden_channels
|
| 32 |
+
self.filter_channels = filter_channels
|
| 33 |
+
self.n_heads = n_heads
|
| 34 |
+
self.n_layers = n_layers
|
| 35 |
+
self.kernel_size = kernel_size
|
| 36 |
+
self.p_dropout = p_dropout
|
| 37 |
+
self.emotion_embedding = emotion_embedding
|
| 38 |
+
|
| 39 |
+
if self.n_vocab!=0:
|
| 40 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 41 |
+
if emotion_embedding:
|
| 42 |
+
self.emo_proj = nn.Linear(1024, hidden_channels)
|
| 43 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
| 44 |
+
|
| 45 |
+
self.encoder = attentions.Encoder(
|
| 46 |
+
hidden_channels,
|
| 47 |
+
filter_channels,
|
| 48 |
+
n_heads,
|
| 49 |
+
n_layers,
|
| 50 |
+
kernel_size,
|
| 51 |
+
p_dropout)
|
| 52 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 53 |
+
|
| 54 |
+
def forward(self, x, x_lengths, emotion_embedding=None):
|
| 55 |
+
if self.n_vocab!=0:
|
| 56 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 57 |
+
if emotion_embedding is not None:
|
| 58 |
+
print("emotion added")
|
| 59 |
+
x = x + self.emo_proj(emotion_embedding.unsqueeze(1))
|
| 60 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 61 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 62 |
+
|
| 63 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 64 |
+
stats = self.proj(x) * x_mask
|
| 65 |
+
|
| 66 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 67 |
+
return x, m, logs, x_mask
|
| 68 |
+
|
| 69 |
+
class PosteriorEncoder(nn.Module):
|
| 70 |
+
def __init__(self,
|
| 71 |
+
in_channels,
|
| 72 |
+
out_channels,
|
| 73 |
+
hidden_channels,
|
| 74 |
+
kernel_size,
|
| 75 |
+
dilation_rate,
|
| 76 |
+
n_layers,
|
| 77 |
+
gin_channels=0):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.in_channels = in_channels
|
| 80 |
+
self.out_channels = out_channels
|
| 81 |
+
self.hidden_channels = hidden_channels
|
| 82 |
+
self.kernel_size = kernel_size
|
| 83 |
+
self.dilation_rate = dilation_rate
|
| 84 |
+
self.n_layers = n_layers
|
| 85 |
+
self.gin_channels = gin_channels
|
| 86 |
+
|
| 87 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 88 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
| 89 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 90 |
+
|
| 91 |
+
def forward(self, x, x_lengths, g=None):
|
| 92 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 93 |
+
x = self.pre(x) * x_mask
|
| 94 |
+
x = self.enc(x, x_mask, g=g)
|
| 95 |
+
stats = self.proj(x) * x_mask
|
| 96 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 97 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 98 |
+
return z, m, logs, x_mask
|
| 99 |
+
|
| 100 |
class SynthesizerTrn(models.SynthesizerTrn):
|
| 101 |
"""
|
| 102 |
Synthesizer for Training
|
|
|
|
| 122 |
n_speakers=0,
|
| 123 |
gin_channels=0,
|
| 124 |
use_sdp=True,
|
| 125 |
+
emotion_embedding=False,
|
| 126 |
**kwargs):
|
| 127 |
|
| 128 |
super().__init__(
|
|
|
|
| 147 |
use_sdp=use_sdp,
|
| 148 |
**kwargs
|
| 149 |
)
|
| 150 |
+
self.enc_p = TextEncoder(n_vocab,
|
| 151 |
+
inter_channels,
|
| 152 |
+
hidden_channels,
|
| 153 |
+
filter_channels,
|
| 154 |
+
n_heads,
|
| 155 |
+
n_layers,
|
| 156 |
+
kernel_size,
|
| 157 |
+
p_dropout,
|
| 158 |
+
emotion_embedding)
|
| 159 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
| 160 |
|
| 161 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None):
|
| 162 |
from ONNXVITS_utils import runonnx
|
| 163 |
|
| 164 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emotion_embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
if self.n_speakers > 0:
|
| 167 |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
|
|
|
| 253 |
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy())
|
| 254 |
o = torch.from_numpy(o[0])
|
| 255 |
|
| 256 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 257 |
+
|
| 258 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
| 259 |
+
from ONNXVITS_utils import runonnx
|
| 260 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
| 261 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
| 262 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
| 263 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
| 264 |
+
# z_p = self.flow(z, y_mask, g=g_src)
|
| 265 |
+
z_p = runonnx("ONNX_net/flow.onnx", z_p=z.numpy(), y_mask=y_mask.numpy(), g=g_src.numpy())
|
| 266 |
+
z_p = torch.from_numpy(z_p[0])
|
| 267 |
+
# z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
| 268 |
+
z_hat = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g_tgt.numpy())
|
| 269 |
+
z_hat = torch.from_numpy(z_hat[0])
|
| 270 |
+
# o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
| 271 |
+
o_hat = runonnx("ONNX_net/dec.onnx", z_in=(z_hat * y_mask).numpy(), g=g_tgt.numpy())
|
| 272 |
+
o_hat = torch.from_numpy(o_hat[0])
|
| 273 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|