Spaces:
Runtime error
Runtime error
Commit
·
a4dc57a
1
Parent(s):
e74bc72
add fiture to early sections too
Browse files- eval_result_figures.py +67 -0
- main.py +7 -4
- results.py +1 -64
eval_result_figures.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from plotly import graph_objects as go
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
## Evaluation Graphs
|
| 6 |
+
|
| 7 |
+
# Load the data
|
| 8 |
+
all_eval_results = {}
|
| 9 |
+
for fname in os.listdir("data/txt360_eval"):
|
| 10 |
+
if fname.endswith(".csv"):
|
| 11 |
+
metric_name = fname.replace("CKPT Eval - ", "").replace(".csv", "")
|
| 12 |
+
all_eval_results[metric_name] = {}
|
| 13 |
+
|
| 14 |
+
# with open(os.path.join("data/txt360_eval", fname)) as f:
|
| 15 |
+
df = pd.read_csv(os.path.join("data/txt360_eval", fname))
|
| 16 |
+
|
| 17 |
+
# slimpajama_res = df.iloc[2:, 2].astype(float).fillna(0.0) # slimpajama
|
| 18 |
+
fineweb_res = df.iloc[2:, 1].astype(float).fillna(method="bfill") # fineweb
|
| 19 |
+
txt360_base = df.iloc[2:, 2].astype(float).fillna(method="bfill") # txt360-dedup-only
|
| 20 |
+
txt360_web_up = df.iloc[2:, 3].astype(float).fillna(method="bfill") # txt360-web-only-upsampled
|
| 21 |
+
txt360_all_up_stack = df.iloc[2:, 4].astype(float).fillna(method="bfill") # txt360-all-upsampled + stackv2
|
| 22 |
+
|
| 23 |
+
# each row is 20B tokens.
|
| 24 |
+
# all_eval_results[metric_name]["slimpajama"] = slimpajama_res
|
| 25 |
+
all_eval_results[metric_name]["fineweb"] = fineweb_res
|
| 26 |
+
all_eval_results[metric_name]["txt360-dedup-only"] = txt360_base
|
| 27 |
+
all_eval_results[metric_name]["txt360-web-only-upsampled"] = txt360_web_up
|
| 28 |
+
all_eval_results[metric_name]["txt360-all-upsampled + stackv2"] = txt360_all_up_stack
|
| 29 |
+
all_eval_results[metric_name]["token"] = [20 * i for i in range(len(fineweb_res))]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Eval Result Plots
|
| 33 |
+
all_eval_res_figs = {}
|
| 34 |
+
for metric_name, res in all_eval_results.items():
|
| 35 |
+
fig_res = go.Figure()
|
| 36 |
+
|
| 37 |
+
# Add lines
|
| 38 |
+
fig_res.add_trace(go.Scatter(
|
| 39 |
+
x=all_eval_results[metric_name]["token"],
|
| 40 |
+
y=all_eval_results[metric_name]["fineweb"],
|
| 41 |
+
mode='lines', name='FineWeb'
|
| 42 |
+
))
|
| 43 |
+
fig_res.add_trace(go.Scatter(
|
| 44 |
+
x=all_eval_results[metric_name]["token"],
|
| 45 |
+
y=all_eval_results[metric_name]["txt360-web-only-upsampled"],
|
| 46 |
+
mode='lines', name='TxT360 - CC Data Upsampled'
|
| 47 |
+
))
|
| 48 |
+
fig_res.add_trace(go.Scatter(
|
| 49 |
+
x=all_eval_results[metric_name]["token"],
|
| 50 |
+
y=all_eval_results[metric_name]["txt360-dedup-only"],
|
| 51 |
+
mode='lines', name='TxT360 - CC Data Dedup'
|
| 52 |
+
))
|
| 53 |
+
fig_res.add_trace(go.Scatter(
|
| 54 |
+
x=all_eval_results[metric_name]["token"],
|
| 55 |
+
y=all_eval_results[metric_name]["txt360-all-upsampled + stackv2"],
|
| 56 |
+
mode='lines', name='TxT360 - Full Upsampled + Stack V2'
|
| 57 |
+
))
|
| 58 |
+
|
| 59 |
+
# Update layout
|
| 60 |
+
fig_res.update_layout(
|
| 61 |
+
title=f"{metric_name} Performance",
|
| 62 |
+
title_x=0.5, # Centers the title
|
| 63 |
+
xaxis_title="Billion Tokens",
|
| 64 |
+
yaxis_title=metric_name,
|
| 65 |
+
legend_title="Dataset",
|
| 66 |
+
)
|
| 67 |
+
all_eval_res_figs[metric_name] = fig_res
|
main.py
CHANGED
|
@@ -23,6 +23,8 @@ import results
|
|
| 23 |
from pybtex.database import parse_file
|
| 24 |
import data_viewer
|
| 25 |
|
|
|
|
|
|
|
| 26 |
|
| 27 |
app, rt = fast_app(
|
| 28 |
debug=True,
|
|
@@ -200,7 +202,7 @@ def main():
|
|
| 200 |
),
|
| 201 |
Li(
|
| 202 |
A(
|
| 203 |
-
"
|
| 204 |
href="#section12",
|
| 205 |
)
|
| 206 |
),
|
|
@@ -296,7 +298,7 @@ def main():
|
|
| 296 |
),
|
| 297 |
Li(
|
| 298 |
A(
|
| 299 |
-
"
|
| 300 |
href="#section42",
|
| 301 |
)
|
| 302 |
),
|
|
@@ -354,7 +356,7 @@ def main():
|
|
| 354 |
),
|
| 355 |
Li(
|
| 356 |
A(
|
| 357 |
-
"
|
| 358 |
href="#section52",
|
| 359 |
)
|
| 360 |
),
|
|
@@ -852,9 +854,10 @@ def intro():
|
|
| 852 |
Section(
|
| 853 |
H2("About TxT360"),
|
| 854 |
P( "TL;DR ",
|
| 855 |
-
B("We introduce TxT360 (Trillion eXtracted Text), the first dataset to globally deduplicate 99 CommonCrawl snapshots and 14 high-quality data sources from diverse domains (e.g., FreeLaw, PG-19, etc.). The large-scale deduplication process and rich metadata stored enables precise control over data distribution.
|
| 856 |
)
|
| 857 |
),
|
|
|
|
| 858 |
P(
|
| 859 |
"Building on top of the prior studies on pre-training data",
|
| 860 |
D_cite(bibtex_key="refinedweb"),
|
|
|
|
| 23 |
from pybtex.database import parse_file
|
| 24 |
import data_viewer
|
| 25 |
|
| 26 |
+
from eval_result_figures import all_eval_res_figs
|
| 27 |
+
|
| 28 |
|
| 29 |
app, rt = fast_app(
|
| 30 |
debug=True,
|
|
|
|
| 202 |
),
|
| 203 |
Li(
|
| 204 |
A(
|
| 205 |
+
"Why TxT360",
|
| 206 |
href="#section12",
|
| 207 |
)
|
| 208 |
),
|
|
|
|
| 298 |
),
|
| 299 |
Li(
|
| 300 |
A(
|
| 301 |
+
"Why Global Deduplication",
|
| 302 |
href="#section42",
|
| 303 |
)
|
| 304 |
),
|
|
|
|
| 356 |
),
|
| 357 |
Li(
|
| 358 |
A(
|
| 359 |
+
"A Simple Data Mix Creates a Good Learning Curve",
|
| 360 |
href="#section52",
|
| 361 |
)
|
| 362 |
),
|
|
|
|
| 854 |
Section(
|
| 855 |
H2("About TxT360"),
|
| 856 |
P( "TL;DR ",
|
| 857 |
+
B("We introduce TxT360 (Trillion eXtracted Text), the first dataset to globally deduplicate 99 CommonCrawl snapshots and 14 high-quality data sources from diverse domains (e.g., FreeLaw, PG-19, etc.). The large-scale deduplication process and rich metadata stored enables precise control over data distribution. We demonstrate a simple but effective upsampling recipe that creates a 15+ trillion-token corpus, outperforming FineWeb 15T on several key metrics. With the information, TxT360 empowers pre-trainers to explore more advanced weighting techniques, a feature not commonly available in previous pre-training datasets. In line with our 360° open source spirit, we document all detailed steps, reasons of our decisions, detailed statistics and more, in additional to the dataset itself. We hope this can serve as a useful resource for future developers."
|
| 858 |
)
|
| 859 |
),
|
| 860 |
+
plotly2fasthtml(all_eval_res_figs["MMLU"]),
|
| 861 |
P(
|
| 862 |
"Building on top of the prior studies on pre-training data",
|
| 863 |
D_cite(bibtex_key="refinedweb"),
|
results.py
CHANGED
|
@@ -11,70 +11,7 @@ from plotly import graph_objects as go
|
|
| 11 |
import pandas as pd
|
| 12 |
import plotly.express as px
|
| 13 |
|
| 14 |
-
|
| 15 |
-
## Evaluation Graphs
|
| 16 |
-
|
| 17 |
-
# Load the data
|
| 18 |
-
all_eval_results = {}
|
| 19 |
-
for fname in os.listdir("data/txt360_eval"):
|
| 20 |
-
if fname.endswith(".csv"):
|
| 21 |
-
metric_name = fname.replace("CKPT Eval - ", "").replace(".csv", "")
|
| 22 |
-
all_eval_results[metric_name] = {}
|
| 23 |
-
|
| 24 |
-
# with open(os.path.join("data/txt360_eval", fname)) as f:
|
| 25 |
-
df = pd.read_csv(os.path.join("data/txt360_eval", fname))
|
| 26 |
-
|
| 27 |
-
# slimpajama_res = df.iloc[2:, 2].astype(float).fillna(0.0) # slimpajama
|
| 28 |
-
fineweb_res = df.iloc[2:, 1].astype(float).fillna(method="bfill") # fineweb
|
| 29 |
-
txt360_base = df.iloc[2:, 2].astype(float).fillna(method="bfill") # txt360-dedup-only
|
| 30 |
-
txt360_web_up = df.iloc[2:, 3].astype(float).fillna(method="bfill") # txt360-web-only-upsampled
|
| 31 |
-
txt360_all_up_stack = df.iloc[2:, 4].astype(float).fillna(method="bfill") # txt360-all-upsampled + stackv2
|
| 32 |
-
|
| 33 |
-
# each row is 20B tokens.
|
| 34 |
-
# all_eval_results[metric_name]["slimpajama"] = slimpajama_res
|
| 35 |
-
all_eval_results[metric_name]["fineweb"] = fineweb_res
|
| 36 |
-
all_eval_results[metric_name]["txt360-dedup-only"] = txt360_base
|
| 37 |
-
all_eval_results[metric_name]["txt360-web-only-upsampled"] = txt360_web_up
|
| 38 |
-
all_eval_results[metric_name]["txt360-all-upsampled + stackv2"] = txt360_all_up_stack
|
| 39 |
-
all_eval_results[metric_name]["token"] = [20 * i for i in range(len(fineweb_res))]
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# Eval Result Plots
|
| 43 |
-
all_eval_res_figs = {}
|
| 44 |
-
for metric_name, res in all_eval_results.items():
|
| 45 |
-
fig_res = go.Figure()
|
| 46 |
-
|
| 47 |
-
# Add lines
|
| 48 |
-
fig_res.add_trace(go.Scatter(
|
| 49 |
-
x=all_eval_results[metric_name]["token"],
|
| 50 |
-
y=all_eval_results[metric_name]["fineweb"],
|
| 51 |
-
mode='lines', name='FineWeb'
|
| 52 |
-
))
|
| 53 |
-
fig_res.add_trace(go.Scatter(
|
| 54 |
-
x=all_eval_results[metric_name]["token"],
|
| 55 |
-
y=all_eval_results[metric_name]["txt360-web-only-upsampled"],
|
| 56 |
-
mode='lines', name='TxT360 - CC Data Upsampled'
|
| 57 |
-
))
|
| 58 |
-
fig_res.add_trace(go.Scatter(
|
| 59 |
-
x=all_eval_results[metric_name]["token"],
|
| 60 |
-
y=all_eval_results[metric_name]["txt360-dedup-only"],
|
| 61 |
-
mode='lines', name='TxT360 - CC Data Dedup'
|
| 62 |
-
))
|
| 63 |
-
fig_res.add_trace(go.Scatter(
|
| 64 |
-
x=all_eval_results[metric_name]["token"],
|
| 65 |
-
y=all_eval_results[metric_name]["txt360-all-upsampled + stackv2"],
|
| 66 |
-
mode='lines', name='TxT360 - Full Upsampled + Stack V2'
|
| 67 |
-
))
|
| 68 |
-
|
| 69 |
-
# Update layout
|
| 70 |
-
fig_res.update_layout(
|
| 71 |
-
title=f"{metric_name} Performance",
|
| 72 |
-
title_x=0.5, # Centers the title
|
| 73 |
-
xaxis_title="Billion Tokens",
|
| 74 |
-
yaxis_title=metric_name,
|
| 75 |
-
legend_title="Dataset",
|
| 76 |
-
)
|
| 77 |
-
all_eval_res_figs[metric_name] = fig_res
|
| 78 |
|
| 79 |
##upsampling validation loss graph
|
| 80 |
|
|
|
|
| 11 |
import pandas as pd
|
| 12 |
import plotly.express as px
|
| 13 |
|
| 14 |
+
from eval_result_figures import all_eval_res_figs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
##upsampling validation loss graph
|
| 17 |
|