Spaces:
Running
on
A10G
Running
on
A10G
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,6 +28,7 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
| 28 |
)
|
| 29 |
pipe.to("cuda")
|
| 30 |
|
|
|
|
| 31 |
|
| 32 |
#pipe.enable_model_cpu_offload()
|
| 33 |
|
|
@@ -51,6 +52,8 @@ def infer(model_name, image_in, prompt, controlnet_conditioning_scale, guidance_
|
|
| 51 |
image = Image.fromarray(image)
|
| 52 |
|
| 53 |
lora_scale= 0.9
|
|
|
|
|
|
|
| 54 |
|
| 55 |
images = pipe(
|
| 56 |
prompt,
|
|
@@ -59,7 +62,7 @@ def infer(model_name, image_in, prompt, controlnet_conditioning_scale, guidance_
|
|
| 59 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 60 |
guidance_scale = guidance_scale,
|
| 61 |
num_inference_steps=50,
|
| 62 |
-
|
| 63 |
cross_attention_kwargs={"scale": lora_scale}
|
| 64 |
).images
|
| 65 |
|
|
|
|
| 28 |
)
|
| 29 |
pipe.to("cuda")
|
| 30 |
|
| 31 |
+
generator = torch.Generator(device="cuda")
|
| 32 |
|
| 33 |
#pipe.enable_model_cpu_offload()
|
| 34 |
|
|
|
|
| 52 |
image = Image.fromarray(image)
|
| 53 |
|
| 54 |
lora_scale= 0.9
|
| 55 |
+
|
| 56 |
+
|
| 57 |
|
| 58 |
images = pipe(
|
| 59 |
prompt,
|
|
|
|
| 62 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 63 |
guidance_scale = guidance_scale,
|
| 64 |
num_inference_steps=50,
|
| 65 |
+
generator=generator.manual_seed(seed),
|
| 66 |
cross_attention_kwargs={"scale": lora_scale}
|
| 67 |
).images
|
| 68 |
|