fffiloni commited on
Commit
b58e2bf
·
1 Parent(s): 69f6c95

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -7
app.py CHANGED
@@ -9,11 +9,12 @@ except:
9
 
10
  import mmpose
11
  import gradio as gr
12
- import cv2
13
  from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
14
  vis_pose_result, process_mmdet_results)
15
  from mmdet.apis import inference_detector, init_detector
16
  from PIL import Image
 
 
17
 
18
  pose_config = 'configs/topdown_heatmap_hrnet_w48_coco_256x192.py'
19
  pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
@@ -43,13 +44,38 @@ def predict(img):
43
  pose_results,
44
  dataset=pose_model.cfg.data.test.type,
45
  show=False)
46
-
 
 
47
  #vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5)
48
  print(f"POSE_RESULTS: {pose_results}")
49
- #pose_image = Image.fromarray(pose_results)
50
- print(f"Returned outputs: {returned_outputs}")
51
- #pose_image.save("pose_frame_" + ".jpeg")
52
- return vis_result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  example_list = ['examples/demo2.png']
55
  title = "Pose estimation"
@@ -59,7 +85,7 @@ article = ""
59
  # Create the Gradio demo
60
  demo = gr.Interface(fn=predict,
61
  inputs=gr.Image(),
62
- outputs=[gr.Image(label='Prediction')],
63
  examples=example_list,
64
  title=title,
65
  description=description,
 
9
 
10
  import mmpose
11
  import gradio as gr
 
12
  from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
13
  vis_pose_result, process_mmdet_results)
14
  from mmdet.apis import inference_detector, init_detector
15
  from PIL import Image
16
+ import cv2
17
+ import numpy as np
18
 
19
  pose_config = 'configs/topdown_heatmap_hrnet_w48_coco_256x192.py'
20
  pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
 
44
  pose_results,
45
  dataset=pose_model.cfg.data.test.type,
46
  show=False)
47
+
48
+ original_image = Image.open(img)
49
+ width, height = original_image.size
50
  #vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5)
51
  print(f"POSE_RESULTS: {pose_results}")
52
+
53
+ # create a black image of the same size as the original image
54
+ black_img = np.zeros((height, width, 3), np.uint8)
55
+
56
+ # iterate through each person in the POSE_RESULTS data
57
+ for person in pose_results:
58
+ # get the keypoints for this person
59
+ keypoints = person['keypoints']
60
+
61
+ # draw lines between keypoints to form a skeleton
62
+ skeleton = [(0,1), (1,2), (2,3), (3,4), (1,5), (5,6), (6,7), (1,8), (8,9), (9,10), (10,11), (8,12), (12,13), (13,14), (0,15), (15,17), (0,16), (16,18)]
63
+ for i, j in skeleton:
64
+ pt1 = (int(keypoints[i][0]), int(keypoints[i][1]))
65
+ pt2 = (int(keypoints[j][0]), int(keypoints[j][1]))
66
+ cv2.line(black_img, pt1, pt2, (255, 255, 255), thickness=2, lineType=cv2.LINE_AA)
67
+
68
+ # draw circles at each keypoint
69
+ for i in range(keypoints.shape[0]):
70
+ pt = (int(keypoints[i][0]), int(keypoints[i][1]))
71
+ cv2.circle(black_img, pt, 3, (255, 255, 255), thickness=-1, lineType=cv2.LINE_AA)
72
+
73
+ # write black_img to a jpg file
74
+ cv2.imwrite("output.jpg", black_img)
75
+ cv2.waitKey(0)
76
+ cv2.destroyAllWindows()
77
+
78
+ return vis_result, "output.jpg"
79
 
80
  example_list = ['examples/demo2.png']
81
  title = "Pose estimation"
 
85
  # Create the Gradio demo
86
  demo = gr.Interface(fn=predict,
87
  inputs=gr.Image(),
88
+ outputs=[gr.Image(label='Prediction'), gr.Image(label='Poses')],
89
  examples=example_list,
90
  title=title,
91
  description=description,