Spaces:
Paused
Paused
import torch, torchvision | |
import sys | |
# sys.path.insert(0, 'test_mmpose/') | |
try: | |
from mmcv.ops import get_compiling_cuda_version, get_compiler_version | |
except: | |
import mim | |
mim.install('mmcv-full==1.5.0') | |
import mmpose | |
import gradio as gr | |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model, | |
vis_pose_result, process_mmdet_results) | |
from mmdet.apis import inference_detector, init_detector | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
pose_config = 'configs/topdown_heatmap_hrnet_w48_coco_256x192.py' | |
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' | |
det_config = 'configs/faster_rcnn_r50_fpn_1x_coco.py' | |
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' | |
# initialize pose model | |
pose_model = init_pose_model(pose_config, pose_checkpoint, device='cpu') | |
# initialize detector | |
det_model = init_detector(det_config, det_checkpoint, device='cpu') | |
def predict(img): | |
mmdet_results = inference_detector(det_model, img) | |
person_results = process_mmdet_results(mmdet_results, cat_id=1) | |
pose_results, returned_outputs = inference_top_down_pose_model( | |
pose_model, | |
img, | |
person_results, | |
bbox_thr=0.3, | |
format='xyxy', | |
dataset=pose_model.cfg.data.test.type) | |
vis_result = vis_pose_result( | |
pose_model, | |
img, | |
pose_results, | |
dataset=pose_model.cfg.data.test.type, | |
show=False) | |
#original_image = Image.open(img) | |
width, height, channels = img.shape | |
#vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) | |
print(f"POSE_RESULTS: {pose_results}") | |
# define colors for each body part | |
body_part_colors = { | |
"nose": (255, 0, 0), | |
"left_eye": (0, 255, 0), | |
"right_eye": (0, 0, 255), | |
"left_ear": (255, 255, 0), | |
"right_ear": (0, 255, 255), | |
"left_shoulder": (255, 0, 255), | |
"right_shoulder": (128, 0, 128), | |
"left_elbow": (0, 128, 128), | |
"right_elbow": (128, 128, 0), | |
"left_wrist": (128, 128, 128), | |
"right_wrist": (0, 0, 0), | |
"left_hip": (255, 128, 0), | |
"right_hip": (0, 128, 255), | |
"left_knee": (128, 0, 255), | |
"right_knee": (255, 0, 128), | |
"left_ankle": (0, 255, 128), | |
"right_ankle": (128, 255, 0) | |
} | |
# create a black image of the same size as the original image | |
black_img = np.zeros((width, height, 3), np.uint8) | |
# iterate through each person in the POSE_RESULTS data | |
for person in pose_results: | |
# get the keypoints for this person | |
keypoints = person['keypoints'] | |
# draw lines between keypoints to form a skeleton | |
skeleton = [("nose", "left_eye"), ("left_eye", "left_ear"), ("nose", "right_eye"), ("right_eye", "right_ear"), | |
("left_shoulder", "right_shoulder"), ("left_shoulder", "left_elbow"), ("right_shoulder", "right_elbow"), | |
("left_elbow", "left_wrist"), ("right_elbow", "right_wrist"), ("left_shoulder", "left_hip"), | |
("right_shoulder", "right_hip"), ("left_hip", "right_hip"), ("left_hip", "left_knee"), | |
("right_hip", "right_knee"), ("left_knee", "left_ankle"), ("right_knee", "right_ankle")] | |
for start_part, end_part in skeleton: | |
start_idx = list(body_part_colors.keys()).index(start_part) | |
end_idx = list(body_part_colors.keys()).index(end_part) | |
if keypoints[start_idx][2] > 0.1 and keypoints[end_idx][2] > 0.1: | |
pt1 = (int(keypoints[start_idx][0]), int(keypoints[start_idx][1])) | |
pt2 = (int(keypoints[end_idx][0]), int(keypoints[end_idx][1])) | |
cv2.line(black_img, pt1, pt2, body_part_colors[start_part], thickness=2, lineType=cv2.LINE_AA) | |
# draw circles at each keypoint | |
for i in range(keypoints.shape[0]): | |
pt = (int(keypoints[i][0]), int(keypoints[i][1])) | |
cv2.circle(black_img, pt, 3, (255, 255, 255), thickness=-1, lineType=cv2.LINE_AA) | |
# write black_img to a jpg file | |
cv2.waitKey(0) | |
cv2.imwrite("output.jpg", black_img) | |
cv2.destroyAllWindows() | |
return vis_result, "output.jpg" | |
example_list = ['examples/demo2.png'] | |
title = "Pose estimation" | |
description = "" | |
article = "" | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(), | |
outputs=[gr.Image(label='Prediction'), gr.Image(label='Poses')], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch() |