Update app.py
Browse files
app.py
CHANGED
|
@@ -22,6 +22,8 @@ model.load_checkpoint(config, checkpoint_dir="checkpoints/bark", eval=True)
|
|
| 22 |
|
| 23 |
def infer(prompt, input_wav_file):
|
| 24 |
|
|
|
|
|
|
|
| 25 |
# Path to your WAV file
|
| 26 |
source_path = input_wav_file
|
| 27 |
|
|
@@ -42,6 +44,7 @@ def infer(prompt, input_wav_file):
|
|
| 42 |
|
| 43 |
text = prompt
|
| 44 |
|
|
|
|
| 45 |
# with random speaker
|
| 46 |
#output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None)
|
| 47 |
|
|
@@ -57,7 +60,7 @@ def infer(prompt, input_wav_file):
|
|
| 57 |
print(output_dict)
|
| 58 |
|
| 59 |
sample_rate = 24000 # Replace with the actual sample rate
|
| 60 |
-
|
| 61 |
wavfile.write(
|
| 62 |
'output.wav',
|
| 63 |
sample_rate,
|
|
@@ -74,6 +77,7 @@ def infer(prompt, input_wav_file):
|
|
| 74 |
return "output.wav", f"bark_voices/{file_name}/{contents[1]}", gr.update(visible=False), gr.update(visible=True)
|
| 75 |
|
| 76 |
def infer_with_npz(prompt, input_wav_file):
|
|
|
|
| 77 |
# Path to your WAV file
|
| 78 |
source_path = input_wav_file
|
| 79 |
# Extract the file name without the extension
|
|
@@ -83,8 +87,12 @@ def infer_with_npz(prompt, input_wav_file):
|
|
| 83 |
# Print the contents
|
| 84 |
for item in contents:
|
| 85 |
print(item)
|
| 86 |
-
os.remove(contents[0])
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
# cloning a speaker.
|
| 89 |
text = prompt
|
| 90 |
# It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.npz`
|
|
@@ -97,8 +105,10 @@ def infer_with_npz(prompt, input_wav_file):
|
|
| 97 |
|
| 98 |
print(output_dict)
|
| 99 |
|
| 100 |
-
|
| 101 |
|
|
|
|
|
|
|
| 102 |
wavfile.write(
|
| 103 |
'output.wav',
|
| 104 |
sample_rate,
|
|
|
|
| 22 |
|
| 23 |
def infer(prompt, input_wav_file):
|
| 24 |
|
| 25 |
+
print("SAVING THE AUDIO FILE TO WHERE IT BELONGS")
|
| 26 |
+
|
| 27 |
# Path to your WAV file
|
| 28 |
source_path = input_wav_file
|
| 29 |
|
|
|
|
| 44 |
|
| 45 |
text = prompt
|
| 46 |
|
| 47 |
+
print("SYNTHETIZING...")
|
| 48 |
# with random speaker
|
| 49 |
#output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None)
|
| 50 |
|
|
|
|
| 60 |
print(output_dict)
|
| 61 |
|
| 62 |
sample_rate = 24000 # Replace with the actual sample rate
|
| 63 |
+
print("WRITING WAVE FILE")
|
| 64 |
wavfile.write(
|
| 65 |
'output.wav',
|
| 66 |
sample_rate,
|
|
|
|
| 77 |
return "output.wav", f"bark_voices/{file_name}/{contents[1]}", gr.update(visible=False), gr.update(visible=True)
|
| 78 |
|
| 79 |
def infer_with_npz(prompt, input_wav_file):
|
| 80 |
+
print("NEW GENERATION WITH EXISTING .NPZ")
|
| 81 |
# Path to your WAV file
|
| 82 |
source_path = input_wav_file
|
| 83 |
# Extract the file name without the extension
|
|
|
|
| 87 |
# Print the contents
|
| 88 |
for item in contents:
|
| 89 |
print(item)
|
|
|
|
| 90 |
|
| 91 |
+
first_item = contents[0] # Index 0 corresponds to the first item
|
| 92 |
+
item_path = os.path.join(f"bark_voices/{file_name}", first_item)
|
| 93 |
+
os.remove(item_path)
|
| 94 |
+
|
| 95 |
+
print("BEGINNING GENERATION")
|
| 96 |
# cloning a speaker.
|
| 97 |
text = prompt
|
| 98 |
# It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.npz`
|
|
|
|
| 105 |
|
| 106 |
print(output_dict)
|
| 107 |
|
| 108 |
+
print("WRITING WAVE FILE")
|
| 109 |
|
| 110 |
+
sample_rate = 24000 # Replace with the actual sample rate
|
| 111 |
+
|
| 112 |
wavfile.write(
|
| 113 |
'output.wav',
|
| 114 |
sample_rate,
|